• 제목/요약/키워드: mathematical terms

검색결과 1,584건 처리시간 0.026초

EXTINCTION AND POSITIVITY OF SOLUTIONS FOR A CLASS OF SEMILINEAR PARABOLIC EQUATIONS WITH GRADIENT SOURCE TERMS

  • Yi, Su-Cheol
    • 충청수학회지
    • /
    • 제30권4호
    • /
    • pp.397-409
    • /
    • 2017
  • In this paper, we investigated the extinction, positivity, and decay estimates of the solutions to the initial-boundary value problem of the semilinear parabolic equation with nonlinear gradient source and interior absorption terms by using the integral norm estimate method. We found that the decay estimates depend on the choices of initial data, coefficients and domain, and the first eigenvalue of the Laplacean operator with homogeneous Dirichlet boundary condition plays an important role in the proofs of main results.

IMPROVED UPPER BOUNDS OF PROBABILITY

  • Lee, Min-Young;Jo, Moon-Shik
    • 대한수학회논문집
    • /
    • 제18권4호
    • /
    • pp.725-736
    • /
    • 2003
  • Let $A_1,{\;}A_2,...,A_n$ be a sequence of events on a given probability space. Let $m_n$ be the number of those $A'_{j}s$ which occur. Upper bounds of P($m_n{\;}\geq{\;}1) are obtained by means of probability of consecutive terms which reduce the number of terms in binomial moments $S_2,n,S_3,n$ and $S_4,n$.

HOLOMORPHIC FUNCTIONS SATISFYING MEAN LIPSCHITZ CONDITION IN THE BALL

  • Kwon, Ern-Gun;Koo, Hyung-Woon;Cho, Hong-Rae
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.931-940
    • /
    • 2007
  • Holomorphic mean Lipschitz space is defined in the unit ball of $\mathbb{C}^n$. The membership of the space is expressed in terms of the growth of radial derivatives, which reduced to a classical result of Hardy and Littlewood when n = 1. The membership is also expressed in terms of the growth of tangential derivatives when $n{\ge}2$.

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.

EXISTENCE OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STEPANOV FORCING TERMS.

  • Lee, Hyun Mork
    • 충청수학회지
    • /
    • 제33권3호
    • /
    • pp.351-363
    • /
    • 2020
  • We introduce a new concept of Stepanov weighted pseudo almost periodic functions of class r which have been established by recently in [20]. Furthermore, we study the uniqueness and existence of Stepanov weighted pseudo almost periodic mild solutions of partial neutral functional differential equations having the Stepanov pseudo almost periodic forcing terms on finite delay.

ASYMPTOTIC STABILIZATION FOR A DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT DAMPING TERMS

  • Yi, Su-Cheol
    • 충청수학회지
    • /
    • 제33권4호
    • /
    • pp.445-468
    • /
    • 2020
  • A long-time behavior of global solutions for a dispersive-dissipative equation with time-dependent damping terms is investigated under null Dirichlet boundary condition. By virtue of an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, when damping coefficients are integrally positive and positive-negative, respectively. Moreover, under the assumptions on on-off or sign-changing damping, we derive an asymptotic stability of solutions.

BLOW-UP PHENOMENA OF ARBITRARY POSITIVE INITIAL ENERGY SOLUTIONS FOR A VISCOELASTIC WAVE EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS

  • Yi, Su-Cheol
    • 충청수학회지
    • /
    • 제35권2호
    • /
    • pp.137-147
    • /
    • 2022
  • In this paper, we considered the Dirichlet initial boundary value problem of a nonlinear viscoelastic wave equation with nonlinear damping and source terms, and investigated finite time blow-up phenomena of the solutions to the equation with arbitrary positive initial data, under suitable conditions.

MINIMAL POLYNOMIAL DYNAMICS ON THE p-ADIC INTEGERS

  • Sangtae Jeong
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.1-32
    • /
    • 2023
  • In this paper, we present a method of characterizing minimal polynomials on the ring 𝐙p of p-adic integers in terms of their coefficients for an arbitrary prime p. We first revisit and provide alternative proofs of the known minimality criteria given by Larin [11] for p = 2 and Durand and Paccaut [6] for p = 3, and then we show that for any prime p ≥ 5, the proposed method enables us to classify all possible minimal polynomials on 𝐙p in terms of their coefficients, provided that two prescribed prerequisites for minimality are satisfied.

WEAK FACTORIZATIONS OF H1 (ℝn) IN TERMS OF MULTILINEAR FRACTIONAL INTEGRAL OPERATOR ON VARIABLE LEBESGUE SPACES

  • Zongguang Liu;Huan Zhao
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1439-1451
    • /
    • 2023
  • This paper provides a constructive proof of the weak factorizations of the classical Hardy space H1(ℝn) in terms of multilinear fractional integral operator on the variable Lebesgue spaces, which the result is new even in the linear case. As a direct application, we obtain a new proof of the characterization of BMO(ℝn) via the boundedness of commutators of the multilinear fractional integral operator on the variable Lebesgue spaces.