J. Korean Math. Soc. 44 (2007), No. 4, pp. 931-940

HOLOMORPHIC FUNCTIONS SATISFYING MEAN
LIPSCHITZ CONDITION IN THE BALL

ErN GuN KwoN*, HyunGg WooN Koo, aAND HonG RAE CHO

ABSTRACT. Holomorphic mean Lipschitz space is defined in the unit ball
of C™. The membership of the space is expressed in terms of the growth
of radial derivatives, which reduced to a classical result of Hardy and
Littlewood when n = 1. The membership is also expressed in terms of
the growth of tangential derivatives when n > 2.

I. Introduction

Let B = B,, be the open unit ball of C™ which will be denoted by D when
n = 1. Let S be the boundary of B, and v and o denote the Lebesgue measure
on C™ and the surface area measure on S respectively, normalized to be v(B) =
land o(S)=1.

For 0 < € < 1, we say that f € Lip.(B) if f is holomorphic in B, continuous
in B, and satisfies the Lipschitz condition of order € : |f(z) — f(w)| = O(|z —
wl®), z,w € B.

Let HP(B), 1 < p < oo, denote the Hardy space in B. It consists of
holomorphic f in B for which || f||gr = lim,_1 My(r, f) < oo, where

M = ([ lf(TC)IPdJ(C)>1/p-

When n = 1, the holomorphic mean Lipschitz space Lip? (D), 1 < p < oo,
0 < € < 1, is defined to consist of f € HP(D) satisfying the mean Lipschitz
condition :

prs 1/p
1) ([ 1) = seesmp £2) 7 oqar.

We in this note extend the definition of the holomorphic mean Lipschitz
space to the unit ball of C™*. Then we give a characterization of the membership
of the space in terms of the mean growth of the concerning derivatives, which
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generalizes a classical result of Hardy and Littlewood. We adapt in this paper
the definition of Lip?(B) as follows.

Definition. For 0 < ¢ < 1 and 1 < p < oo, we say that f € LipP(B) if
f € H?(B) and

1/p
(1.2 (f1rwo - s ast)) ™ = ogar
for all unitary operators U of C™, where h = (hq, ha, ..., h,) € R" is determined
to be that e e?hz . . ¢ are the eigenvalues of U.

€/2
Note that in the right side of (1.2) |h|¢ = (Z;‘zl Ihjiz) . When n = 1,
this definition reduces to (1.1). Lip?(B) is a Banach space with the norm

1 . 1/p
Il + sup o1 ( L1100 - 1) da(c)) ,

where the supremum is taken with respect to the unitary operators U and h is
determined as in (1.2).

As far as the Lipschitz functions are concerned, the most interesting and
dominant result may be the relationship with the growth of their derivatives.
As is well-known, there are results of Hardy and Littlewood expressing the
membership of Lip.(D) and Lip? (D) in terms of the growth of the derivatives.
That is,

(1.3) f € Lip(D) < Mux(r,f) = O((1-r)1)
and
(1.4) feLip?(D) <= Mp(r,f') = O(1—-r)1)

for holomorphic f in D. See [2, Theorem 5.1] and [2, Theorem 5.4]. It also is
known that (1.3) has an extension to n > 1, with Rf in place of f’ :
f € Lipe(B) <= My(r,Rf) = O((1-r)"?),

where R f, the radial derivative of f, is defined by Rf = Z?:l Zj'a%. See [4,
Theorem 6.4.9 and Theorem 6.4.10]. Using Rf in place of f’, it is naturally
called for to extend (1.4) to the case of n > 1, and our first result says, as
supposed to be,

Theorem 1. Let 0 < e <1 and 1 <p < oo. If f is holomorphic in B, then
feLip?(B) <« My(r,Rf)=0((1-r) ).
Next, we proceed to handle the mean p growth of multiple derivatives and
of tangential derivatives. For 1 <4 < j < n, we define Ti; and T;; by
Zj = fiaj - Zjai, ?z‘j = 215]' — zjgi,
where §; = aizj and §; = aizj' Given a multi-index o = (aq,...,a,), we

abuse the notation 7% to mean T})} ---T.% for some choice of iy, ...,%, and
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J1y--+, Jn, where T;; is either 7;; or Tz‘j- With these conventions, we can
generalize Theorem 1 to the following

Theorem 2. Let f be holomorphic in B and 0 < € < 1. Then each of the
following is equivalent to the membership f € LipP(B).

(1) For some k > 1, Mp(r,R*f) = O((1 — r)<7%).

(2) For allk > 1, My(r,R*f) = O((1 — r)7F).

(3) For some k > 2, My(r,T*f) = O((1 — 7)*"*/2) for all multi-indez o

with |a| = k
(4) For allk > 2, My(r,T*f) = O((1 — r)¢*/2) for all multi-indez o with
o = k.

Moreover, if 0 < e < %, then these are equivalent to

(5) My(r,Tf) = O((1 — r)*=1/2) for all multi-index a with |a| = 1.

II. Proof of Theorem 1

Suppose M(r,Rf) = O ((1—r)*"!). By applying Minkowski’s inequality
to the relation

ool <51+ [ di<f<s<>> ds

<|f(0)| + sup
s<1/2

FUeo)|+2 [ RiGols

it is easy to see that f € HP(B). In particular, f({) = lim,_1- f(p¢) exists
for almost every ( € S.

To prove mean Lipschitz condition, let U be a unitary operator of C". Then
there is another unitary operator V of C" such that V"1UV = D, where D is

the diagonal matrix consisting of eigenvalues of U. So, by the unitary invariance
of do

/ FUC) — FOP do(¢) / FUVE) — FVOP do(Q)
/|fVD< FVOP do(©) /|fov (¢) — F o V(P do(0),

where e?%7,1 < j < n, are the eigenvalues of U and
e = (eihlgl,eihzc% 3 .7eihncn) )
If |h| > %, then it follows directly that
1/p
([1rwe-roras©) < clr

by simply taking C = 2'¢|| | gr».
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Assume otherwise that 0 < |h| < . Taking r = 1 — |h|, Minkowski’s
inequality gives

A 1/p
{ /S FoV(ERO) ~ Fo V(O da(o}
| | 1/
< { [1reviere ~ fovietop da<<>}
S
) 1/p
N { [irovirero - o v<r<>|f’da(<>}
1/p
+ { /S FoV(re) ~ fo V(c)lpda(o} ,
and the right hand side quantity of this inequality equals

(2.1) 2{/5 1£(r¢) = F(O)P dO‘(C)}l/p

+ {/3 1f o V(re™¢) — f o V(rQ)[? do(c)}l/p

by the unitary invariance of do again. If we denote the slice function of f on
(€S by fe(M) = f(A), A € D, then since Rf(A() = ML) (see [4, 6.4.4]), it

follows that
{ [1s60~rcp dcf(C)}l/p - { /. i p da(o}l/p ,

which is, by use of the continuous form of Minkowski’s inequality, bounded by

/ "W

1
d
/ My(p, R 1) %.

By the hypothesis on Rf, this quantity is bounded by a constant times |h|<.
To bound the second term of (2.1), note that Rf is invariant under unitary
composition if f is holomorphic in B, that is,

(2.2) (RAVz) = (R(foV))(2), z€B,

for any unitary operator V of C". This is easy to verify by direct computation.
Fix V and let foV = F for simplicity. Then by (2.2) and the unitary invariance
of do,

(2.3) /S RF(rO)P do(C) = /S (REGVOP do(¢) = /S RFGOP do(0).



HOLOMORPHIC FUNCTIONS SATISFYING MEAN LIPSCHITZ CONDITION 935

From the obvious inequality

] (reth¢) — TC l/ pr ZthC) \
/ Z aaz F(re®"¢) re’*i¢; ihy dt
j

<rlh| /0 |VF(re™¢)| dt,

it follows by using Minkowski’s inequality that

{ /S |F(re"¢) — F(rO)” da(C)}w

(24)  <rfn| {/S (/Jl\vp(reuh()l dt)” da(()}w

<rlh| /1 {/ |VE(re¢)|” da(()}l/p dt = r|h| Mp(r, VF).

Here V denotes the complex gradient : V = (-2 PR RRRE, ‘Zn). It is easy to see
(2.5) 2PIVF(2)P = IRF(2)]” + ) |TwF (2)|”
i<k

(see [3, p. 1389 for example). By (2.4) and (2.5), we have

1/p
{ [1F0er0) = FeOP ao©} ™ < 3y RE) + X 6 My (. T,
i<k
But it is known that
Mp(r, TjxF) < CMy(r,RF)

(see [1, p.146] for example). Therefore, by (2.3) and the hypothesis on Rf, the
second term of (2.1) is bounded by C|h|(1 —r)¢~! = Clh|~.

Conversely, suppose f € Lip?(B). For 0 < r < 1, slice integration([4,
Proposition 1.4.7]) gives,

Mp(T,Rf)P:/S|Rf(rC)|Pda(C) :/Sda(C)/o W|Rf(rei(’()|p ;l_@

Since f, € H*(D) almost every ¢ € S, it follows by one variable Cauchy integral
representation that

2w ity 6
|Rf(rew()l < |fé(7'ei9)| S/O lf(e C) f(e C)I ﬁ

lett — retf|? 2
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for almost every ¢ € S. Here e'¢ = (€%(y, €%(s, ..., €"(y) . Hence

Mp(r,Rns{ L (e ey 2, (o}l/p.

The last quantity is bounded, by Minkowski’s inequality, by

1 27 . ; do 1/p
[ ([ [ - seor antc))

By the hypothesis,

(/Slf(eito -fQF da(O)l/p < cly

So if we use the fact that

27
[¢[° _ !
/0 |1 — rett|? dt =0 (1—r)l=e

[4, P. 74], we obtain
1
Mp(r,Rf) = O (W) ‘

ITI. Proof of Theorem 2

Let alone the role of Theorem 1, the equivalence of (1) ~ (5) are somewhat
known. We include a proof for the sake of completeness, which consists of a
sequence of lemmas. We let, for simplicity, R = 37, 2;0; and R = > i1 205

Lemma 1. For 1 <i<j<n, let T;; be either T;; or T;;. Then we have
(R+R)T;; = Tij(R + R).
Proof. By a simple calculation,
T;R=RT; +T;, TRT;=T,;R+T;.
Therefore,
(R+R)T;; = T;;(R+ R).
By taking conjugate we see that this holds with —’f@-j in place of T;;. 1

We will consider differential operators X appearing as composition
(3.1) Xf=X1 - Xif,

where each X; is R or a T;; or a Tij. For such an operator its weight is
defined to be the sum of each weights of X, the weight of R being 1 and %

the weight of each 7;; and 7;;. The following is a weak version of Lemma
2.5 of [1], where the polydisc P(z,6), z € B™, § > 0, is defined as follows.
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fz=r(0<r<1,¢ €S, pick n,...,n, so that {,n2,...,7} is an
orthonormal basis of C". Then

J=2

P(z,6) = {w=z+xg+ZAjnj: A < 6, [\l <61/2,j:2,...,n}.

Lemma 2. Let X and Y be the differential operators of the form (3.1) with
the weight of X being m. Then there is a constant C such

P —C_ w)Pdv{w
(32) XY SV < Sy |, W H@Fante)

for all holomorphic function f in B and P(z,6) C B.

Lemma 3. Let f be holomorphic in B and | > 1, then for all s > 0 there exists
a compact subset K of B such that for allk <l and 0 <r <1

MP(T’ ka) S C sup |f(2)| + 'SMI’(rv le)
zeK
If0 < e< 1 and f is holomorphic in B, then My(r,R'f) = O((1 —r)<™!) for
some 1 > 1 if and only if Mp(r,R*f) = O((1 — r)**) for all k > 1.

Proof. For a positive integer m, a simple calculation using the homogeneous
polynomial expansion gives us

(33 1) = 10) + s [ (~logom R ()T

Since |R™f(2)| < C|z| Zialﬁm |0%f(2)|, by Cauchy integral formula we have

1-1/N
[ e rm e

1/2
<0 s @) [ (Clggnla<e s [fG)

laj<m [#1S1-1/N |z|<1—1/2N

for each positive integer N. Take R* f in place of f and (I — k) in place of m in
(3.3), then, by the Minkowski’s integral inequality together with the fact that
RE-FRE = R! we have

My(r,RFf)<C  sup |f(z)|
|z|<1-1/2N
C 1
T —k) Jiyn

(3.4)

+ (= logt) ==L M, (tr, R f)dt.
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Thus, for each positive integer N we have

MP(T’ ka)

1

<C sup If(2)I+C (— logt) =P~ M (tr, RE f)dit

|z|<1-1/2N 1-1/N
1

<C sup |f(z)|+C (— logt)(l‘k)‘lMp(r, ’R,lf)dt

(3.5) |z|<1—1/2N 1-1/N

1/N
<O s |fE+OMERY) [ )0

|z|]<1-1/2N 0

2

: I—k
<C sup |f(x)|+C (ﬁ) My(r, R f).

|z|<1—1/2N

Here, on the second inequality we used the fact that Mp(r,g) is an increasing
function of r for any holomorphic function g in B. For a given s > 0 if we take
N large enough to have the last constant C(2/N)!=% of (3.5) less than s and
take K = {z: |2] <1— 5%}, (3.5) therefore proves the first statement.

From (3.4), it is straight forward that if M,(r,R'f) =
My(r,REf) =O0((1 —=r)*) forall k =1,...,1

O((1 — r)*™Y) then

Forr€(0,1)let6=1—randr’ =r+4§/2. By (3.2),fork=1+j

MP ("" ka)p

1 l ]
< C/S Spitn+1 /})(r<7§/4) IR f(w)|P dv(w)do(C)

1
=€ _—/ R f(w)PX r w) do({)dv(w
5/2<1jw| <25 OPITTHL S! F)P Xp(re,6/4)(w) do(¢)dv(w)

1
< C+/ R f(w)|P dv(w
gpIt 6/2<1—|w{<26| Sl dulw)

S CMP(T/a le)p .

orJ

From this it is straight forward that if M,(r,R'f) = O((1 — r)¢7!) then

My(r,REf) = O((1 — r)<=%) for all k > I.

Lemma 4. Let 0 < € < 1. Suppose f is holomorphic in B and My(r,R*f) =
O((1 — r)*7%) for some k > 1. Then, for each | > 2 we have M,(r,T®f) =
O((1 — r)7Y2) for all multi-index o with |a| = I. Moreover, when 0 < € < 3

this holds with [ = 1.

Proof. We assume € > % and proof for the case € < % can easily be modified

from that of € > %
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Fix a multi-index o with || = . By Lemma 3, we may assume k = 1 and
My(r,Rf) = O((1 — r)*71). By the fundamental theorem of calculus, we have

Tf(2) = T*£(0) + / dresiee)] g, _ /0 [(R+ﬁ)Taf](tz)%

dt
0
Since f is holomorphic, by Lemma 1 we have,
R+R)T*f =T*(R+R)f =T*Rf
and
[TRf(2) < Clel D 10°F(2).
1Bl=|al+1
Therefore, by Minkowski’s integral inequality we have

1
My(r,T*f) < C sup |f()] + / M, (tr, TR f)dt.
2|<3/4 1/2

Forr € (0,1),let § =1 —r and 7' = r + 2. Then by (3.2), we have

My(r, T°Rf)? < C /S 51,[—/21;;;1 /P s IR (w)[Pdv(w)do ()

1
<C _ P d d
< /5/2<1—w<26 SeljaenTl /S|Rf(w)| Xp(re,s/4)(w)do(C)dv(w)

1
< C——/ Rf (w)|Pdv(w
T [,y g RO 0)

MP (Tlv Rf)p
=C opl/2

Here, on the last inequality we used the fact that Mp(r, Rf) is an increasing
function of r. Therefore, we have

1

My(r,T°f) < C sup |f(z)|+ My (tr,T*Rf)dt
|2|<3/4 1/2

1
<C sup |f(z)|+C/ (1= tr)e=D=4/2gy
|z}<3/4 0
= O((1 = r)==1/2),
O

Lemma 5. Let f be holomorphic in B. Suppose, either (1) 0 < € < 1 and
My(r,T®f) = O((1 — r)7Y2) for some | > 2 and for all multi-indez o with
la| =1, or (i) 0 < € < 1/2 and M, (r, T f) = O((1—r)*~Y2) for all multi-index
o with |a| = 1. Then, we have My(r,R¥f) = O((1 — r)**) for all k > 1.

Proof. Let I < 2m. A simple calculation shows that

~ N TyTyf(z) = 2(n — DR (2).
i25
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Therefore, we have

My(r,R™f)<C > My(r,T?f).
|8|=2m

Let |3| = 2m, then following exactly the same argument as in the proof of
Lemma 4, we have

My(r, T ) = O((1 = r)¢=2™/2) N ™ My (r,Tf) = O((1 — 7)*™™).
|af=t
Therefore, we have
My(r,R™f) = O((1 —r)=™™).
And again by Lemma 3, this holds for all positive integer m. O
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