• Title/Summary/Keyword: mathematical model development

Search Result 765, Processing Time 0.024 seconds

A Study to Develop Criteria to Judge Mathematical Problems and a Learning Model in Mathematics Problem-Based Learning (수학과 문제중심학습(PBL)을 위한 문제분석기준 개발과 학습모형 연구)

  • Huh, Nan;Kang, Ok-Ki
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.3
    • /
    • pp.255-274
    • /
    • 2010
  • The main goal of this study is to provide a practical help to teachers who want to practice Problem-Based Learning in mathematics for establishing and realizing PBL environment. This study also produces mathematics PBL Learning Model and Criteria to Judge to help practice and to vitalize PBL in mathematics. To solve the research topics, I reviewed theoretical issues related to PBL, which became theoretical bases of this study. And then, from the theoretical background, items of criteria to judge mathematical problems in mathematics PBL are abstracted. And, through checking on content validity by experts, criteria to judge mathematical problems in mathematics PBL are completed. Also, based on previous PBL models, learning model in mathematics PBL that takes characteristics of mathematics into account is suggested through case studies by observing, a qualitative research method, on PBL study to materialize it. This research is expected to help teachers who want to practice PBL in mathematics.

  • PDF

A Study on the Mathematical Model of Capability based EA Framework for Align, Integration and Interoperability of Enterprise Resource (엔터프라이즈 자원의 정렬, 통합 및 상호운용성을 위한 능력기반 EA2I프레임워크의 수학적 모델에 관한 연구)

  • Park, Sanggun;Lee, Tae-gong;Son, Hyunsik
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2012
  • Many Countries are recently focued on building capability based military and operating for the defense budget efficiency and operational effectiveness. The EA not only defines enterprise scope but also identifies relation among them, manage change and complexity. Accordingly, this research aims to build architecture framework which can achieve alignment, integration and interoperability by developing it with output. Through this, architecture framework can be changed into force development and operation. And it can be used for construction of effective force and operation for NCO by applying mathematical model and method of force priority development based on developed capabilities-based architecture framework.

A Study on the Process of Teaching.Learning Materials Development According to the Level in the Figurate Number Tasks for Elementary Math Gifted Students (초등 수학 영재를 위한 도형수 과제의 수준별 교수.학습 자료 개발 절차와 방법에 관한 연)

  • Kim, Yang-Gwon;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.745-768
    • /
    • 2010
  • The purpose of this study at gifted students' solving ability of the given study task by using all knowledge and tools which encompass mathematical contents and curriculums, and developing the teaching learning materials of gifted students in accordance with their level which tan enhance their mathematical thinking ability and develop creative idea. With these considerations in mind, this paper sought for the standard and procedures of teaching learning materials development according to the levels for the education of the mathematically gifted students. presented the procedure model of material development, produced teaching learning methods according to levels in the task of figurate number, and developed prototypes and examples of teaching learning materials for the mathematically gifted students. Based on the prototype of teaching learning materials for the gifted students in mathematics in accordance with their level, this research developed the materials for students and materials for teachers, and performed the modification and complement of material through the field application and verification. It confirmed various solving processes and mathematical thinking levels by analyzing the figurate number tasks. This result will contribute to solving the study task by using all knowledge and tools of mathematical contents and curriculums that encompass various mathematically gifted students, and provide the direction of the learning contents and teaching learning materials which can promote the development of mathematically gifted students.

  • PDF

Virtual Development Scheme for Temperature Control System (온도 제어 시스템 설계를 위한 가상 개발 기법)

  • Jang, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5202-5207
    • /
    • 2011
  • A temperature control system is very important part in many industrial applications. Typical development procedures for temperature control system consist of several stages such as conceptual system design, construction of physical system, controller design based on the mathematical model for the system, and performance test. Since the mathematical model is usually obtained with the aid of system identification technique based on repeated experiments after construction of the physical system, the above procedures require very large amount of time and cost. It takes also large amount of time in the controller design and performance test procedures. In this paper, a virtual development scheme, which can predict the performance of the temperature control system prior to construction of physical system, for rapid validation of the initial system design is proposed. The effectiveness of the proposed scheme is shown by using SISO (Single Input Single Output) example.

A Review for Non-linear Models Describing Temperature-dependent Development of Insect Populations: Characteristics and Developmental Process of Models (비선형 곤충 온도발육모형의 특성과 발전과정에 대한 고찰)

  • Kim, Dong-Soon;Ahn, Jeong Joon;Lee, Joon-Ho
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.1-18
    • /
    • 2017
  • Temperature-dependent development model is an essential component for forecasting models of insect pests as well as for insect population models. This study reviewed the nonlinear models which explain the relationship between temperature and development rate of insects. In the present study, the types of models were classified largely into empirical and biophysical model, and the groups were subdivided into subgroups according to the similarity of mathematical equations or the connection with original idea. Empirical models that apply analytical functions describing the suitable shape of development curve were subdivided into multiple subgroups as Stinner-based types, Logan-based types, performance models and Beta distribution types. Biophysical models based on enzyme kinetic reaction were grouped as monophyletic group leading to Eyring-model, SM-model, SS-mode, and SSI-model. Finally, we described the historical development and characteristics of non-linear development models and discussed the availability of models.

Strategic Resource Initiative of Enterprise

  • Viatkina, Tetiana
    • Asian Journal of Business Environment
    • /
    • v.4 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Purpose - The paper aims to study strategic enterprise resource initiative formation processes. It analyzes the process of managing the strategic resource initiative and discusses its implementation mechanism. A research model for enterprises' strategic development is proposed, which suggests a geometric interpretation for estimating a company's long-term development. Research design, data, and methodology - The analysis employs theoretical studies of modern researchers. The main models used to determine the optimal alternative business strategy are graphic interpretation and mathematical modeling. Results - The hypotheses testing demonstrates the definition of a company's strategic resource initiative and explains the-mechanism or design of its formation. The study presents a geometric prism-refraction model of practice using a strategic resource initiative. Conclusions - An enterprise's strategy could return to its initial state in case of its unexpected deviation as a result of passing through the nodal points. The proposed model allows us to evaluate business performance, its surrounding environment, and the resource management strategy, to determine the necessary scope of strategy changes necessary to bring it back to the original state.

구조물의 진동해석에 의한 시스템 규명에 관한 연구

  • 현천성;이기형;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.279-284
    • /
    • 1992
  • This paper presents the theoretical development and qualitiative evaluation of a new concept in the mathematical modeling of dynamicstructures. We use both test data and analytical approximations to identify the parameters of an incomplete model. The model has the capability of prodicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the test were varied by selecting different numbers of points of meansurement, varying the frequency range, and by including assumed measurement error. It is recommended that the theroetical development be continued and that applications to more complex structures be carried out in order todevelop a better understanding of the limitations and capabilites of the method. A successful, more definitive evaluation could lead to immediate practical applications.

A Study on the Manifestation Process Model Development of Group Creativity among Mathematically Gifted Students (수학영재의 집단창의성 발현 모델 개발)

  • Sung, Jihyun;Lee, Chonghee
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.557-580
    • /
    • 2017
  • The purpose of this study is developing the manifestation process model of group creativity among mathematically gifted students. Therefore, I designed the manifestation process model of group creativity by researching the existing literatures on group creativity and mathematical creativity. The manifestation process model of group creativity was applied to mathematically gifted students' class. By analyzing students' response, the manifestation process model of group creativity was improved and concretized. In conclusion, the process of a combination of contributions was concretized and the major variables on group creativity such as a diversity, conflict, emotionally supportive environment and social comparison were verified. In addition, some reflective processes was discovered from a case study.

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

Automated reduced thermo-mathematical model generation method for satellite considering temperature tolerance and fixed nodes (온도 허용오차와 고정 노드를 고려한 자동화된 위성 축소 열모델 생성 방법)

  • Jimin Nam
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • The task of generating a reduced thermal model of a satellite must be performed at least once in a satellite project to shorten the time of orbital thermal analysis and perform thermal analysis coupled to a launch vehicle. Although there are various methods for generating a reduced thermal model, an intuitive and convenient iso-thermal mesh generation method is used the most widely in practice. However, there is still a lack of research on automation of the isothermal mesh generation method. In this paper, we proposed an automated generation method of satellite reduced thermo-mathematical model based on the isothermal mesh generation method considering temperature tolerance and fixed nodes. The proposed method was validated using three different temperature tolerance cases. The average temperature difference satisfied the guidelines of ECSS.