DOI QR코드

DOI QR Code

Automated reduced thermo-mathematical model generation method for satellite considering temperature tolerance and fixed nodes

온도 허용오차와 고정 노드를 고려한 자동화된 위성 축소 열모델 생성 방법

  • Jimin Nam (Agency for Defense Development (ADD))
  • Received : 2022.11.24
  • Accepted : 2023.02.27
  • Published : 2023.04.30

Abstract

The task of generating a reduced thermal model of a satellite must be performed at least once in a satellite project to shorten the time of orbital thermal analysis and perform thermal analysis coupled to a launch vehicle. Although there are various methods for generating a reduced thermal model, an intuitive and convenient iso-thermal mesh generation method is used the most widely in practice. However, there is still a lack of research on automation of the isothermal mesh generation method. In this paper, we proposed an automated generation method of satellite reduced thermo-mathematical model based on the isothermal mesh generation method considering temperature tolerance and fixed nodes. The proposed method was validated using three different temperature tolerance cases. The average temperature difference satisfied the guidelines of ECSS.

인공위성의 축소 열모델 생성 작업은 궤도 열해석의 시간 단축과 발사체 연동 열해석 수행을 위해 인공위성 제작 프로젝트에서 반드시 한 번 이상 수행하게 된다. 축소 열모델 생성 방법은 여러가지가 거론되고 있지만, 실무적으로는 직관적이면서도 편리한 등온격자생성법이 가장 많이 사용되고 있다. 그러나 아직까지 등온격자생성법의 자동화에 관한 연구는 부족한 실정이다. 본 논문에서는 온도 허용오차와 고정 노드를 고려한 등온격자생성법 기반 위성 축소 열모델 자동 생성 방법을 제안하였다. 서로 다른 세 가지의 온도 허용오차 케이스를 이용하여 방법론을 검증하였으며, 평균 온도 차이는 ECSS의 축소 열모델 생성 가이드라인(< 2 K)을 만족함을 확인할 수 있었다.

Keywords

References

  1. H. Sundu and N. Doner, "Detailed thermal design and control of an observation satellite in low earth orbit," European Mechanical Science, vol. 4, pp. 171-178, Jul. 2020.  https://doi.org/10.26701/ems.730201
  2. H. Y. Jun, J. H. Kim, C. Y. Han and J. W. Chae, "Development of thermal analysis program for geostationary satellite panel," Korean Society of Computational Fluids Engineering, vol. 15, pp. 66-72, Sep. 2010. 
  3. J. H. Kim, H. Y. Jun and B. Kim, "Reduction of the conductive thermal model and detailed temperatures recovery for a satellite panel," J. Comput. Fluids Eng., vol. 22, pp. 9-16, Sep. 2017.  https://doi.org/10.6112/kscfe.2017.22.3.009
  4. J. H. Kim, B. Kim, "Study on the reduction method of the satellite thermal mathematical model," Advancees in Engineering Software, vol. 108, pp. 37-47, Mar. 2017.  https://doi.org/10.1016/j.advengsoft.2017.02.007
  5. F. Jourffroy, D. Charvet, M. Jacquiau and A. Captitaine, "Automated thermal model reduction for telecom s/c walls," European Thermal & ECLS Software Workshop, Oct. 2004. 
  6. T. Basset, P. Hugonnot, P. Connil and M. Ferrier, "TMRT: Presentation of the tool and application on satellite model reduction for launcher coupled analysis," International Conference on Environmental Systems, vol. 46, pp. 10-14, Jul. 2016. 
  7. G. F. Rico, "Quasi-autonomous spacecraft thermal model reduction," Universidad Politecnica de Madrid, pp. 5-9, Feb. 2018. 
  8. S. Appel, R. Patricio, H. P. Koning and O. Pin, "Automatic conductor generation for thermal lumped parameter models," 34th International Conference on Environmental Systems, Jul. 2004. 
  9. J. H. Kim, H. Y. Jun and S. J. Kim "A study on thermal model reduction algorithm for satellite panel," J. Comput. Fluids Eng., vol. 17, pp. 9-15, Dec. 2016.  https://doi.org/10.6112/kscfe.2012.17.4.009
  10. E. Secretariat, "ECSS-E-HB-31-03A Space engineering - Thermal analysis handbook," European Space Agency, pp. 55-56, Nov. 2016.