• Title/Summary/Keyword: mathematical knowledge

Search Result 880, Processing Time 0.027 seconds

G/T Experts' Recognition on Educating ICT Core-competencies for Gifted Students in Science (과학영재를 위한 ICT 핵심역량 교육에 대한 전문가 인식 조사)

  • Lee, Jaeho;Jin, Sukun;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.143-152
    • /
    • 2016
  • In this paper, we attempted to provide the bases of effective educational programs for fostering ICT competencies of gifted students in science. For this purpose, we tried to answer the questions like 'What are the ICT core-competence for gifted students in science?' and 'How can we educate those competencies effectively?' We started by reviewing existing studies on ICT competencies for talented people in future society and then adopted one[6] as the basis for further validation. We tried to work with as many G/T experts as possible, and decided to use the online survey methodology because the experts are scattered all over the country. The survey was sent to the corresponding person who is in charge of G/T education in each area, and then e-mailed to G/T experts in that area. Through these procedures, three hundred four(304) G/T experts from all around the country participated in this survey. The results showed the followings: (1) G/T experts agreed with the importance and necessity of ICT competencies for gifted students in science; (2) G/T experts agreed with the validity of three core ICT competencies, which are 'knowledge and skills competence, creativity competence, and characteristic competence,' for gifted students in science; (3) G/T experts agreed with the validity of educational goals, which are suggested for fostering each ICT core-competence of gifted students in science; and (4) G/T experts regarded 'product-oriented education' and 'ICT device-oriented education' as important and effective types of education programs for fostering ICT competencies of gifted students in science.

A Study on the Meaning of Geometric Analysis of Gameun Temple's Taegeuk Shapes (감은사 태극문양의 기하학적 의미 연구)

  • Kim, Il-Hwan;Park, Tae-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.435-444
    • /
    • 2021
  • This paper discusses the geometrical interpretation of the Taegeuk Shapes of Kameun Temple through the geometric analysis of mathematics. Based on the literature, This paper attempted to clarify that the origin of Gameunsa's founding of the spirit of patriotism may coincide with historical records through historical literature and geometric meaning. First, the background of the founding of Kameun temple, geographical location located near the East Sea, especially the history of the ancient Chinese mathematics at the time, And that mathematical knowledge influenced all fields such as agriculture, architecture, and art. Secondly, it is related to the historical record as the space of about 60 centimeters, which is uniquely underground, was identified as the structure of the excavated space. It is thought that there is a strong correlation with the origin that the King Munmu changed into a dragon, and set up the temple to be able to stay. Based on these, the clues of the interpretation of the taegeuk and the triangular pattern were searched in the samcheon yanggi(參天兩地) of the Oriental and circumference of the Western. The taegeuk and triangular patterns represent the symbols of yin-yang harmony, which correspond to the origin of its creation. the Korean people regarded the mysterious dragon as a symbol of yinyang harmony. In conclusion the Shapes of Kameun temple's stone is consistent with the contents mentioned in the historical record.

A Study on the Conservation of Biodiversity by the Ecological Economic Numerical Model (생태경제수치모형에 의한 생물다양성 보존에 관한 연구)

  • Kim, Byung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.629-637
    • /
    • 2022
  • It is at risk of depletion of biodiversity due to indiscriminate overfishing of ecosystems and destruction of habitats. Intensive fertilizers or development of related facilities to increase agricultural production in poor indigenous areas devastate the soil. Preservation of biodiversity is now emerging as an important issue of global human coexistence. After the Post-2020 GBF Declaration, all governance in agricultural development in indigenous agricultural areas should be supported and promoted as biodiversity conservation measures. A compromise plan to reduce ecosystem development and biodiversity loss can help establish public governance policies. In this paper, a viability kernel used for viable control feedback analysis is introduced to solve conflicting economic and ecological problems in ecosystem conservation, and a mathematical model on biodiversity conservation by the viability kernel is examined. Because all species in the ecosystem are interdependent, if the balance is broken, biodiversity is depleted, which is irreversible and eventually leads to extinction. For sustainable use and harmony of biological resources, a lot of policy consideration is required, such as creative governance that can efficiently protect all species. Subsidies or tax incentives have a direct impact on biodiversity conservation. The recovery of species in a state of decreasing biodiversity can be said to be of great economic value. Biodiversity will allow indigenous producers to be proud of their unique traditional knowledge and have a positive impact on local tourism, thereby enhancing regional identity and greatly contributing to the survival and prosperity of mankind.

Understanding Elementary School Teachers' Intention to Use Artificial Intelligence in Mathematics Lesson Using TPACK and Technology Acceptance Model (TPACK과 기술수용모델을 활용한 초등교사의 수학 수업에서 인공지능 사용 의도 이해)

  • Son, Taekwon;Goo, Jongseo;Ahn, Doyeon
    • Education of Primary School Mathematics
    • /
    • v.26 no.3
    • /
    • pp.163-180
    • /
    • 2023
  • This study aimed to investigate the factors influencing the intentions of elementary school teachers to use artificial intelligence (AI) in mathematics lessons and to identify the essential prerequisites for the effective implementation of AI in mathematics education. To achieve this purpose, we examined the structural relationship between elementary school teachers' TPACK(Technological Pedagogical Content Knowledge) and the TAM(Technology Acceptance Model) using structural equation model. The findings of the study indicated that elementary school teachers' TPACK regarding the use of AI in mathematics instruction had a direct and significant impact on their perceived ease of use and perceived usefulness of AI. In other words, when teachers possessed a higher level of TPACK competency in utilizing AI in mathematics classes, they found it easier to incorporate AI technology and recognized it as a valuable tool to enhance students' mathematics learning experience. In addition, perceived ease of use and perceived usefulness directly influenced the attitudes of elementary school teachers towards the integration of AI in mathematics education. When teachers perceived AI as easy to use in their mathematics lessons, they were more likely to recognize its usefulness and develop a positive attitude towards its application in the classroom. Perceived ease of use, perceived usefulness, and attitude towards AI integration in mathematics classes had a direct impact on the intentions of elementary school teachers to use AI in their mathematics instruction. As teachers perceived AI as easy to use, valuable, and developed a positive attitude towards its incorporation, their intention to utilize AI in mathematics education increased. In conclusion, this study shed light on the factors influencing elementary school teachers' intentions to use AI in mathematics classes. It revealed that teachers' TPACK plays a crucial role in facilitating the integration of AI in mathematics education. Additionally, the study emphasized the significance of enhancing teachers' awareness of the advantages and convenience of using AI in mathematics instruction to foster positive attitudes and intentions towards its implementation. By understanding these factors, educational stakeholders can develop strategies to effectively promote the utilization of AI in mathematics education, ultimately enhancing students' learning outcomes.

Analysis of the Connection between Competency and Elementary School Content System and Achievement Standards in the 2022 Revised Mathematics Curriculum (2022 개정 수학과 교육과정에서 역량과 초등학교 내용 체계 및 성취기준과의 연계성 분석 )

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.369-385
    • /
    • 2023
  • As the 2022 revised mathematics curriculum emphasizing competency cultivation was announced, the researcher analyzed the connection between competency, content system, and achievement standards in elementary school mathematics curriculum. The results of the analysis of the link between the competency of the curriculum revision research report, its sub-elements, the 'process and skills' of the curriculum content system, and the achievement standard verb are as follows. First, most of the five curriculum competencies (problem solving, reasoning, communication, connection, and information processing) of the mathematics department are implemented as "process-skills" of the content system, which is further specified and presented as an achievement-based verb. Second, the five competencies were not implemented with the same weight in all areas, and the appropriate process-skills were differentiated and presented according to the content of knowledge-understanding by area/grade group. Third, verbs of the achievement standards were more rich than before in the 2022 revised elementary school mathematics curriculum. Fourth, 'understanding' throughout the entire area was still presented as the highest proportion. Through the research results, the researcher discussed clearly establishing the meaning of problem-solving capabilities in the future and developing and presenting "understanding" as a more specific process or skills.

A Study on Criteria for the Credit Approval of Nationally Authorized Civil Qualifications (국가공인 민간자격 학점인정 기준에 관한 방안 연구)

  • Shin Myong-Hoon;Park Jong-Sung
    • Journal of Engineering Education Research
    • /
    • v.7 no.2
    • /
    • pp.5-21
    • /
    • 2004
  • The study aims to propose plans to give credit approval to those who obtain authorized civil qualifications, in accordance with the enforcement regulations under the Clause 7, Article 4 of $\ulcorner$the law on credit approval and others$\lrcorner$. Preceding studies on the grounds and principles of credit approval, analyses on the related references and materials, and surveys asking the managers of authorized civil qualifications their opinion over giving credit approval to authorized civil qualifications were conducted as the methodology of this study. Besides, a conference inviting experts from the relevant fields was held to specifically overview the contents and levels to be examined by qualification items, to conduct a face-to-face survey on directions to take in the credit approval of authorized civil qualifications, and to analyze the level and the degree of the difficulty of questions in the examinations of authorized civil qualifications. The contents and the level of credit approval in this study are as follows. For the authorized civil qualification items unable to formulate criteria in accordance with the principles of credit approval taken in the national technique qualification and other national qualifications, two factors were put under consideration for setting the level of the credit approval. First, the level and scope of work were investigated. Second, the content of qualification was compared with the course work of college. The degree of difficulty in the scope and performance of work was reviewed by specialized qualification and general qualification, respectively. Specialized qualification indicates whether or not the required knowledge and technique are acquired for performing duty in specific work fields. It falls into service fields and qualification items except qualification items on general clerical work of the national technique qualification and other national qualifications. To the contrary, general qualification is to prove the degree of acquisition of knowledge and technique for improving the basic competencies throughout diverse types of occupations. It includes competencies to verify language proficiency, mathematical and statistical capacity, problem settlement, negotiation and communication skills. When the authorized civil qualification came under the specialized qualification, the level of qualification was determined in comparison with the level of work of national qualifications. In the case of the general qualification, the credit to be approved was settled by conducting a comparative analysis on the course work of college.

A Mathematics Teacher's Reflective Practice as a Process of Professional Development (전문성 신장 과정으로서의 한 수학교사의 성찰적 실천)

  • Kim, Dong-Won
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.735-760
    • /
    • 2009
  • Most of every teachers' life is occupied with his or her instruction, and a classroom is a laboratory for mutual development between teacher and students also. Namely, a teacher's professionalism can be enhanced by circulations of continual reflection, experiment, verification in the laboratory. Professional development is pursued primarily through teachers' reflective practices, especially instruction practices which is grounded on $Sch\ddot{o}n's$ epistemology of practices. And a thorough penetration about situations or realities and an exact understanding about students that are now being faced are foundations of reflective practices. In this study, at first, we explored the implications of earlier studies for discussing a teacher's practice. We could found two essential consequences through reviewing existing studies about classroom and instructions. One is a calling upon transition of perspectives about instruction, and the other is a suggestion of necessity of a teachers' reflective practices. Subsequently, we will talking about an instance of a middle school mathematics teacher's practices. We observed her instructions for a year. She has created her own practical knowledges through circulation of reflection and practices over the years. In her classroom, there were three mutual interaction structures included in a rich expressive environments. The first one is students' thinking and justifying in their seats. The second is a student's explaining at his or her feet. The last is a student's coming out to solve and explain problem. The main substances of her practical know ledges are creating of interaction structures and facilitating students' spontaneous changes. And the endeavor and experiment for diagnosing trouble and finding alternative when she came across an obstacles are also main elements of her practical knowledges Now, we can interpret her process of creating practical knowledge as a process of self-directed professional development when the fact that reflection and practices are the kernel of a teacher's professional development is taken into account.

  • PDF

Development and Application of Integrative STEM (Science, Technology, Engineering and Mathematics) Education Model Based on Scientific Inquiry (과학 탐구 기반의 통합적 STEM 교육 모형 개발 및 적용)

  • Lee, Hyonyong;Kwon, Hyuksoo;Park, Kyungsuk;Oh, Hee-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.63-78
    • /
    • 2014
  • Integrative STEM education is an engineering design-based learning approach that purposefully integrates the content and process of STEM disciplines and can extend its concept to integration with other school subjects. This study was part of fundamental research to develop an integrative STEM education program based on the science inquiry process. The specific objectives of this study were to review relevant literature related to STEM education, analyze the key elements and value of STEM education, develop an integrative STEM education model based on the science inquiry process, and suggest an exemplary program. This study conducted a systematic literature review to confirm key elements for integrative STEM education and finally constructed the integrative STEM education model through analyzing key inquiry processes extracted from prior studies. This model turned out to be valid because the average CVR value obtained from expert group was 0.78. The integrative STEM education model based on the science inquiry process consisted of two perspectives of the content and inquiry process. The content can contain science, technology, engineering, and liberal arts/artistic topics that students can learn in a real world context/problem. Also, the inquiry process is a problem-solving process that contains design and construction and is based on the science inquiry. It could integrate the technological/engineering problem solving process and/or mathematical problem solving process. Students can improve their interest in STEM subjects by analyzing real world problems, designing possible solutions, and implementing the best design as well as acquire knowledge, inquiry methods, and skills systematically. In addition, the developed programs could be utilized in schools to enhance students' understanding of STEM disciplines and interest in mathematics and science. The programs could be used as a basis for fostering convergence literacy and cultivating integrated and design-based problem-solving ability.

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.