• Title/Summary/Keyword: mathematical knowledge

Search Result 882, Processing Time 0.029 seconds

Development of Ideal Model Based Optimization Procedure with Heuristic Knowledge (정위적 방사선 수술에서의 이상표적모델과 경험적 지식을 활용한 수술계획 최적화 방법 개발)

  • 오승종;송주영;최경식;김문찬;이태규;서태석
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.84-93
    • /
    • 2004
  • Stereotactic radiosurgery (SRS) is a technique that delivers a high dose to a target legion and a low dose to a critical organ through only one or a few irradiations. For this purpose, many mathematical methods for optimization have been proposed. There are some limitations to using these methods: the long calculation time and difficulty in finding a unique solution due to different tumor shapes. In this study, many clinical target shapes were examined to find a typical pattern of tumor shapes from which some possible ideal geometrical shapes, such as spheres, cylinders, cones or a combination, are assumed to approximate real tumor shapes. Using the arrangement of multiple isocenters, optimum variables, such as isocenter positions or collimator size, were determined. A database was formed from these results. The optimization procedure consisted of the following steps: Any shape of tumor was first assumed to an ideal model through a geometry comparison algorithm, then optimum variables for ideal geometry chosen from the predetermined database, followed by a final adjustment of the optimum parameters using the real tumor shape. Although the result of applying the database to other patients was not superior to the result of optimization in each case, it can be acceptable as a plan starling point.

  • PDF

A Study on the Velocity, the Grain Size and the Bed Depth of the Rapid Filter (급속여과지(急速濾過池)의 여과속도(濾過速度)와 여재구성(濾材構成)의 연구(硏究) -여과저항(濾過抵抗)을 중심(中心)으로-)

  • Kang, Yong Tai
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 1983
  • In spite of extensive knowledge of the surface chemistry and the transport mechanism in filtration systems, there is still insufficient understanding of the physical characteristics of suspensions and the system components. Because of this, no filtration mechanisms are mathematically generalized to the full extent. The purpose of this paper is to propose experimental equations for the filtration process. using the tracer study in filter layer. Some of results are as follows. (1) The Volume of the specific deposit (${\sigma}$) in filtration was directly measurable using the tracer study without interrupting the filtration. (2) It was also confirmed that the head loss in filtration was greatly in fluenced by the micro-air babbles. (3) The correction coefficient(f) was introduced into the Kozeny-Carman equation in order to apply it for the clogging filter media. The coefficient(f) was experimentally obtained. The total head loss of the filter media is given by next equation. $${\frac{h}{h_0}}={\frac{1}{L}}{\int}^{z=L}_{z=0}f({\sigma})g({\varepsilon}_0,{\sigma})dz$$ $$f=aexp(-b{\sigma})$$ The above equation was applicable without regard to the variation of the suspension concentration, the filter medium diameter, the filter depth, the filtration velocity, and the amount of aluminum in all continuous filtration experiments. (4) The total head loss was graphically generalized assuming mathematical filtration models I II (see fig. 7,8) (5) The total head loss was obtained from the filtration model in the field filtration conditions. (see fig. 9,10)

  • PDF

Elementary Pre-service Teachers' Uses of Mathematics Teaching Expertise According to the Number of Their Mathematics Instructions in the Teaching Practice (교육실습에서 수학 수업 실행 횟수에 따른 초등예비교사의 수학 수업전문성 지식 활용 양상)

  • Kim, Hae Gyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.1
    • /
    • pp.1-24
    • /
    • 2018
  • This study included eleven elementary pre-service teachers who participated in the first and second teaching practices held by J Education College in 2015. After the pre-service teachers were encouraged to self-reflect on their mathematics teaching using a reflective survey sheet of mathematics teaching expertise, their uses of mathematics teaching expertise were analyzed according to the times of their mathematics practice instructions. The results are as follows: First, as the frequency of their mathematics teaching increased, the pre-service teachers' uses of mathematics teaching expertise increased, especially greatly with seven of them. However, the number of subcategories where the teachers' uses of mathematics teaching expertise increased was different from at least two to seven depending on the teachers. Second, the pre-service teachers who performed mathematics teaching practices four times used more of mathematics teaching expertise than those who did two times or three times. Third, some pre-service teachers who taught two or three times never reached 90% of the total score of any subcategory, even in the subcategory where they showed increase in their uses of mathematics teaching expertise. Fourth, the subcategory of 'reflection before class - teaching perspective - understanding of mathematics subject knowledge' was analyzed as the most difficult one for the study participants, and the reason is, they think, that there are not enough materials on the historical back grounds of mathematical concepts.

  • PDF

A Study on the Definition of a Circumcenter and an Incenter of Triangle (삼각형의 외심, 내심의 정의에 관한 고찰)

  • Jun, Young-Bae;Kang, Jeong-Gi;Roh, Eun-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.355-375
    • /
    • 2011
  • This paper was designed for the purpose of helping the functional comprehension on the concept of a circumcenter and an incenter of triangle and offering the help for teaching-learning process on their definitions. We analysed the characteristic of the definition on a circumcenter and an incenter of triangle and studied the context, mean and purpose on the definition. The definition focusing on the construction is the definition stressed on the consistency of the concept through the fact that it is possible to draw figure of the concept. And this definition is the thing that consider the extend of the concept from triangle to polygon. Meanwhile this definition can be confused because the concept is not connected with the terminology. The definition focusing on the meaning is easy to memorize the concept because the concept is connected with the terminology but is difficult to search for the concept truth. And this definition is the thing that has the grounds on the occurrence but is taught in a made-knowledge. The definition focusing on both the construction and meaning is the definition that the starting point is vague in the logical proof process. We hope that the results are used to improve the understanding the concept of a circumcenter and an incenter of triangle in the field of mathematical education.

  • PDF

A Comparative Study of Elementary School Mathematics Textbooks between Korea and Japan - Focused on the 4th Grade - (한국과 일본의 초등학교 수학교과서 비교 연구 - 4학년을 중심으로 -)

  • Lee, Jae-Chun;Kim, Seon-Yu;Kang, Hong-Jae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • This research is to provide a useful reference for the future revision of textbook by comparative analysis with the textbook in the 4th grade of elementary school in Japan. The results from this research is same as follows: First, Korean curriculum is emphasizing the reasonable problem-solving ability developed on the base of the mathematical knowledge and skill. Meantime, Japanese puts much value on the is focusing on discretion and the capability in life so that they emphasize each person's learning and raising the power of self-learning and thinking. The ratio on mathematics in both company are high, but Japanese ensures much more hours than Korean. Second, the chapter of Korean textbook is composed of 8 units and the title of the chapter is shown as key word, then the next objects are describes as 'Shall we do$\sim$' type. Hence, the chapter composition of Japanese textbook is different among the chapter and the title of the chapter is described as 'Let's do$\sim$'. Moreover, Korean textbook is arranged focusing on present study, however Japanese is composed with each independent segments in the present study subject to the study contents. Third, Japanese makes students understand the decimal as the extension of the decimal system with measuring unit($\ell$, km, kg) then, learn the operation by algorithm. In Korea, students learn fraction earlier than decimal, but, in Japan students learn decimal earlier than fraction. For the diagram, in Korea, making angle with vertex and side comes after the concept of angle, vertex and side is explained. Hence, in Japan, they show side and vertex to present angle.

  • PDF

A Study on Productive Struggle in Mathematics Problem Solving (수학적 문제해결에서 Productive Struggle(생산적인 애씀)에 관한 연구)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.3
    • /
    • pp.329-350
    • /
    • 2019
  • Productive struggle is a student's persevering effort to understand mathematical concepts and solve challenging problems that are not easily solved, but the problem can lead to curiosity. Productive struggle is a key component of students' learning mathematics with a conceptual understanding, and supporting it in learning mathematics is one of the most effective mathematics teaching practices. In comparison to research on students' productive struggles, there is little research on preservice mathematics teachers' productive struggles. Thus, this study focused on the productive struggles that preservice mathematics teachers face in solving a non-routine mathematics problem. Polya's four-step problem-solving process was used to analyze the collected data. Examples of preservice teachers' productive struggles were analyzed in terms of each stage of the problem-solving process. The analysis showed that limited prior knowledge of the preservice teachers caused productive struggle in the stages of understanding, planning, and carrying out, and it had a significant influence on the problem-solving process overall. Moreover, preservice teachers' experiences of the pleasure of learning by going through productive struggle in solving problems encouraged them to support the use of productive struggle for effective mathematics learning for students, in the future. Therefore, the study's results are expected to help preservice teachers develop their professional expertise by taking the opportunity to engage in learning mathematics through productive struggle.

A Study of Realistic Mathematics Education - Focusing on the learning of algorithms in primary school - (현실적 수학교육에 대한 고찰 - 초등학교의 알고리듬 학습을 중심으로 -)

  • 정영옥
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.81-109
    • /
    • 1999
  • This study aims to reflect the basic principles and teaching-teaming principles of Realistic Mathematics Education in order to suppose an way in which mathematics as an activity is carried out in primary school. The development of what is known as RME started almost thirty years ago. It is founded by Freudenthal and his colleagues at the former IOWO. Freudenthal stressed the idea of matheamatics as a human activity. According to him, the key principles of RME are as follows: guided reinvention and progressive mathematisation, level theory, and didactical phenomenology. This means that children have guided opportunities to reinvent mathematics by doing it and so the focal point should not be on mathematics as a closed system but on the process of mathematisation. There are different levels in learning process. One should let children make the transition from one level to the next level in the progress of mathematisation in realistic contexts. Here, contexts means that domain of reality, which in some particular learning process is disclosed to the learner in order to be mathematised. And the word of 'realistic' is related not just with the real world, but is related to the emphasis that RME puts on offering the students problem situations which they can imagine. Under the background of these principles, RME supposes the following five instruction principles: phenomenological exploration, bridging by vertical instruments, pupils' own constructions and productions, interactivity, and interwining of learning strands. In order to reflect how to realize these principles in practice, the teaming process of algorithms is illustrated. In this process, children follow a learning route that takes its inspiration from the history of mathematics or from their own informal knowledge and strategies. Considering long division, the first levee is associated with real-life activities such as sharing sweets among children. Here, children use their own strategies to solve context problems. The second level is entered when the same sweet problems is presented and a model of the situation is created. Then it is focused on finding shortcomings. Finally, the schema of division becomes a subject of investigation. Comparing realistic mathematics education with constructivistic mathematics education, there interaction, reflective thinking, conflict situation are many similarities but there are alsodifferences. They share the characteristics such as mathematics as a human activity, active learner, etc. But in RME, it is focused on the delicate balance between the spontaneity of children and the authority of teachers, and the development of long-term loaming process which is structured but flexible. In this respect two forms of mathematics education are different. Here, we learn how to develop mathematics curriculum that respects the theory of children on reality and at the same time the theory of mathematics experts. In order to connect the informal mathematics of children and formal mathematics, we need more teachers as researchers and more researchers as observers who try to find the mathematical informal notions of children and anticipate routes of children's learning through thought-experiment continuously.

  • PDF

A Historical, Mathematical, Psychological Analysis on Ratio Concept (비 개념에 대한 역사적, 수학적, 심리적 분석)

  • 정은실
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.421-440
    • /
    • 2003
  • It is difficult for the learner to understand completely the ratio concept which forms a basis of proportional reasoning. And proportional reasoning is, on the one hand, the capstone of children's elementary school arithmetic and, the other hand, it is the cornerstone of all that is to follow. But school mathematics has centered on the teachings of algorithm without dealing with its essence and meaning. The purpose of this study is to analyze the essence of ratio concept from multidimensional viewpoint. In addition, this study will show the direction for improvement of ratio concept. For this purpose, I tried to analyze the historical development of ratio concept. Most mathematicians today consider ratio as fraction and, in effect, identify ratios with what mathematicians called the denominations of ratios. But Euclid did not. In line with Euclid's theory, ratio should not have been represented in the same way as fraction, and proportion should not have been represented as equation, but in line with the other's theory they might be. The two theories of ratios were running alongside each other, but the differences between them were not always clearly stated. Ratio can be interpreted as a function of an ordered pair of numbers or magnitude values. A ratio is a numerical expression of how much there is of one quantity in relation to another quantity. So ratio can be interpreted as a binary vector which differentiates between the absolute aspect of a vector -its size- and the comparative aspect-its slope. Analysis on ratio concept shows that its basic structure implies 'proportionality' and it is formalized through transmission from the understanding of the invariance of internal ratio to the understanding of constancy of external ratio. In the study, a fittingness(or comparison) and a covariation were examined as the intuitive origins of proportion and proportional reasoning. These form the basis of the protoquantitative knowledge. The development of sequences of proportional reasoning was examined. The first attempts at quantifying the relationships are usually additive reasoning. Additive reasoning appears as a precursor to proportional reasoning. Preproportions are followed by logical proportions which refer to the understanding of the logical relationships between the four terms of a proportion. Even though developmental psychologists often speak of proportional reasoning as though it were a global ability, other psychologists insist that the evolution of proportional reasoning is characterized by a gradual increase in local competence.

  • PDF

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.

Schematic Cost Estimation Method using Case-Based Reasoning: Focusing on Determining Attribute Weight (사례기반추론을 이용한 초기단계 공사비 예측 방법: 속성 가중치 산정을 중심으로)

  • Park, Moon-Seo;Seong, Ki-Hoon;Lee, Hyun-Soo;Ji, Sae-Hyun;Kim, Soo-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2010
  • Because the estimated cost at early stage has great influence on decisions of project owner, the importance of early cost estimation is increasing. However, it depends on experience and knowledge of the estimator mainly due to shortage of information. Those tendency developed into case-based reasoning(CBR) method which solves new problems by adapting previous solution to similar past problems. The performance of CBR model is affected by attribute weight, so that its accurate determination is necessary. Previous research utilizes mathematical method or subjective judgement of estimator. In order to improve the problem of previous research, this suggests CBR schematic cost estimation method using genetic algorithm to determine attribute weight. The cost model employs nearest neighbor retrieval for selecting past case. And it estimates the cost of new cases based on cost information of extracted cases. As the result of validation for 17 testing cases, 3.57% of error rate is calculated. This rate is superior to accuracy rate proposed by AACE and the method to determine attribute weight using multiple regression analysis and feature counting. The CBR cost estimation method improve the accuracy by introducing genetic algorithm for attribute weight. Moreover, this makes user understand the problem-solving process easier than other artificial intelligence method, and find solution within short time through case retrieval algorithm.