School Mathematics (대한수학교육학회지:학교수학)
- Volume 5 Issue 4
- /
- Pages.421-440
- /
- 2003
- /
- 1229-4322(pISSN)
A Historical, Mathematical, Psychological Analysis on Ratio Concept
비 개념에 대한 역사적, 수학적, 심리적 분석
Abstract
It is difficult for the learner to understand completely the ratio concept which forms a basis of proportional reasoning. And proportional reasoning is, on the one hand, the capstone of children's elementary school arithmetic and, the other hand, it is the cornerstone of all that is to follow. But school mathematics has centered on the teachings of algorithm without dealing with its essence and meaning. The purpose of this study is to analyze the essence of ratio concept from multidimensional viewpoint. In addition, this study will show the direction for improvement of ratio concept. For this purpose, I tried to analyze the historical development of ratio concept. Most mathematicians today consider ratio as fraction and, in effect, identify ratios with what mathematicians called the denominations of ratios. But Euclid did not. In line with Euclid's theory, ratio should not have been represented in the same way as fraction, and proportion should not have been represented as equation, but in line with the other's theory they might be. The two theories of ratios were running alongside each other, but the differences between them were not always clearly stated. Ratio can be interpreted as a function of an ordered pair of numbers or magnitude values. A ratio is a numerical expression of how much there is of one quantity in relation to another quantity. So ratio can be interpreted as a binary vector which differentiates between the absolute aspect of a vector -its size- and the comparative aspect-its slope. Analysis on ratio concept shows that its basic structure implies 'proportionality' and it is formalized through transmission from the understanding of the invariance of internal ratio to the understanding of constancy of external ratio. In the study, a fittingness(or comparison) and a covariation were examined as the intuitive origins of proportion and proportional reasoning. These form the basis of the protoquantitative knowledge. The development of sequences of proportional reasoning was examined. The first attempts at quantifying the relationships are usually additive reasoning. Additive reasoning appears as a precursor to proportional reasoning. Preproportions are followed by logical proportions which refer to the understanding of the logical relationships between the four terms of a proportion. Even though developmental psychologists often speak of proportional reasoning as though it were a global ability, other psychologists insist that the evolution of proportional reasoning is characterized by a gradual increase in local competence.
본 논문에서는 비 개념이 역사적으로 어떤 의미를 가지고 있으며, 비에 대한 생각이 어떻게 변화되어 왔는지 살펴본다. 또한 비에 대한 여러 가지 수학적 의미를 찾아보고, 비 개념의 본질이 어떠해야 하는지를 알아본다. 그리고 비례적 추론의 직관적 근원과 발달 과정을 찾아보고 비 개념의 심리적 측면을 분석해 봄으로써 비 개념 지도와 관련하여 교육적 시사점을 탐구한다.
Keywords