• Title/Summary/Keyword: mathematical concepts

Search Result 935, Processing Time 0.022 seconds

The Biometry-Mendelian Controversy in the History of Statistics (생물측정학-멘델주의 논쟁에 대한 통계학사적 고찰)

  • Jo, Jae-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.303-324
    • /
    • 2008
  • From mid-1890's, biometricians and Mendelians debated over Darwin's evolutionary theory. Biologist W. Weldon and Mathematician K. Pearson were leaders of the biometric school and biologist W. Bateson led Mendelian school. In this paper topics of the controversy such as causation vs. correlation, frequency distribution are considered. And in relation to the tradition of British statistics, we consider the philosophy of Karl Pearson revealed in this debate. Besides many statistical methods and concepts by Karl Pearson, the newly born mathematical statistics got a new journal Biometrika, a department in university, and a school of researchers from this controversy.

A Practical Case Study of Student-Centered Education Using Small Group Activities: 'Prospect of Nuclear Engineering' Course (소그룹 활동을 활용한 학습자중심 교육 사례: '원자핵공학의 미래' 교과목을 중심으로)

  • Na, Yong-Su;Min, Hyeree
    • Journal of Engineering Education Research
    • /
    • v.22 no.5
    • /
    • pp.29-36
    • /
    • 2019
  • Here we analyze a case of redesigned course named "Prospect of Nuclear Engineering" as an example of student-entered education which came to the fore of university education innovation. This course was reformed from lecture-based to student-centered class by changing the context as follows: Stimulating students by addressing various problems or episodes behind scientific and mathematical concepts in the history; Offering experimental project to perceive the importance of differential equations; Exploring the research status and issues of nuclear engineering and the ways of attacking them by discipline; Discussing the public acceptance of nuclear power plants. Small group activities using 'small group discussion' and 'peer-learning' have been applied in this course to enhance students' critical and creative ability. In the survey, students rated highly in the fact that they could actively interact with the peers and that they could think for themselves through 'small group discussion' and 'peer-learning' which is not just the way of conveying knowledge.

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

Using History of East Asian Mathematics in Mathematics Classroom (수학 교실에서 동아시아 수학사 활용하기)

  • JUNG, Hae Nam
    • Journal for History of Mathematics
    • /
    • v.35 no.5
    • /
    • pp.131-146
    • /
    • 2022
  • This study is to find out how to use the materials of East Asian history in mathematics classroom. Although the use of the history of mathematics in classroom is gradually considered advantageous, the usage is mainly limited to Western mathematics history. As a result, students tend to misunderstand mathematics as a preexisting thing in Western Europe. To fix this trend, it is necessary to deal with more East Asian history of mathematics in mathematics classrooms. These activities will be more effective if they are organized in the context of students' real life or include experiential activities and discussions. Here, the study suggests a way to utilize the mathematical ideas of Bāguà and Liùshísìguà, which are easily encountered in everyday life, and some concepts presented in 『Nine Chapter』 of China and 『GuSuRyak』 of Joseon. Through this activity, it is also important for students to understand mathematics in a more everyday context, and to recognize that the modern mathematics culture has been formed by interacting and influencing each other, not by the east and the west.

APPROXIMATION OF SOLUTIONS THROUGH THE FIBONACCI WAVELETS AND MEASURE OF NONCOMPACTNESS TO NONLINEAR VOLTERRA-FREDHOLM FRACTIONAL INTEGRAL EQUATIONS

  • Supriya Kumar Paul;Lakshmi Narayan Mishra
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.137-162
    • /
    • 2024
  • This paper consists of two significant aims. The first aim of this paper is to establish the criteria for the existence of solutions to nonlinear Volterra-Fredholm (V-F) fractional integral equations on [0, L], where 0 < L < ∞. The fractional integral is described here in the sense of the Katugampola fractional integral of order λ > 0 and with the parameter β > 0. The concepts of the fixed point theorem and the measure of noncompactness are used as the main tools to prove the existence of solutions. The second aim of this paper is to introduce a computational method to obtain approximate numerical solutions to the considered problem. This method is based on the Fibonacci wavelets with collocation technique. Besides, the results of the error analysis and discussions of the accuracy of the solutions are also presented. To the best knowledge of the authors, this is the first computational method for this generalized problem to obtain approximate solutions. Finally, two examples are discussed with the computational tables and convergence graphs to interpret the efficiency and applicability of the presented method.

A Study on the Analysis and Correction of Error for the Gearwheel-involved Problem (톱니바퀴 관련 문제해결 과정에서 발생하는 오류 원인의 분석 및 지도방안)

  • Roh, Eun Hwan;Jeong, Sang Tae;Kim, Min Jeong
    • Communications of Mathematical Education
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Recently a student's mathematical thinking and problem-solving skills are emphasized. Nevertheless, the students solved the problem associated with a given type of problem solving using mechanical algorithms. With this algorithm, It's hard to achieve the goal that are recently emphasized. Furthermore It may be formed error or misconception. However, consistent errors have positive aspects to identify of the current cognitive state of the learner and to provide information about the cause of the error. Thus, this study tried to analyze the error happening in the process of solving gearwheel-involved problem and to propose the correct teaching method. The result of student's error analysis, the student tends to solve the gear-wheel problem with proportional expression only. And the student did not check for the proportional expression whether they are right or wrong. This may be occurred by textbook and curriculum which suggests only best possible conditioned problems. This paper close with implications on the discussion and revision of the concepts presented in the curriculum and sequence related to the gearwheel-involved problem as well as methodological suggested of textbook.

Development and Usage of Interactive Digital Linear Algebra Textbook (대화형 수학 디지털교과서 개발과 활용 사례 연구 - 선형대수학을 중심으로-)

  • Lee, Sang-Gu;Lee, Jae Hwa;Park, Kyung-Eun
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • The 4th industrial revolution is coming. In order to prepare for the new learning environment with it, we may need digital mathematics textbooks that fully utilize all possible technologies. So various attempts have been made in elementary and middle school mathematics education. However, despite the importance of higher mathematics, we haven't seen a best possible math digital textbooks yet in Korea. In this paper, we introduce our new model of interactive math digital textbook about Linear Algebra/ Calculus/ Differential Equations/ Statistics/ Engineering Math. Especially, this manuscript focuses on our experience of using digital contents and interactive labs for developing a new model for linear algebra digital textbook. We introduce our works on linear algebra digital textbooks which include pdf e-book, web contents, video clips of lectures, interactive lab. Using this linear algebra digital textbook, students can freely use any mobile devices to access diverse learning materials, lessons, and hands-on exercises without any limitations. Also, times saved in the computation, coding, and typing process can be used to have more discussions for deeper understanding of mathematical concepts. This type of linear algebra digital textbook, which contains all interactive free cyber-lab with codes and all lectures for each sections, can be considered as a new model for the next generation of math digital textbook.

A Study on Component of Storytelling on the middle school 1 Mathematics Textbooks (중학교 1학년 수학 교과서에 반영된 스토리텔링 구성요소 분석)

  • Min, Mi Hong;Huh, Nan
    • Communications of Mathematical Education
    • /
    • v.27 no.4
    • /
    • pp.547-566
    • /
    • 2013
  • Education, Science and Technology Department in January 2012, announced the advancement of mathematics education scheme. Select a textbook of storytelling method in policy by this, it is easy to understand the math, and that you can learn happily, was fabricated and spread. In this study, we selected three of the textbook that describes the set to its characteristics the application of storytelling in a textbook of mathematics 13 different middle school that will be used from March 2013. And of research that the textbook is to analyze the reflected reality of storytelling that is part of the advancement scheme of mathematics education content and direction and basic curriculum of current. View by presenting instead I is an object of the present invention. Six components of storytelling in the teaching and learning context that is proposed in the Park's study (2012) are used to analyze. Those are 'Persona', 'empathy', 'analogy', 'aesthetic experience ', 'plot' and 'time'. The data were analyzed storytelling was used to introduce the nature and mathematical concepts in math textbook based on these elements 6. That is looking at the ratio of the presence or absence of reflecting elements of storytelling on teaching and learning context that the data storytelling meets much the elements of storytelling to investigate the characteristics of each textbook. It is expected to provide the information and resources needed to develop methods and materials that can be studied to be interested in conjunction with real life mathematics as a result of this study.

Commutative Property of Multiplication as a priori Knowledge (선험적 지식으로서 곱셈의 교환법칙 교육의 문제)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Instructions for the commutative property of multiplication at elementary schools tend to be based on checking the equality between the quantities of 'a times b 'and b' times a, ' for example, $3{\times}4=12$ and $4{\times}3=12$. This article critically examined the approaches to teach the commutative property of multiplication from Kant's perspective of mathematical knowledge. According to Kant, mathematical knowledge is a priori. Yet, the numeric exploration by checking the equality between the amounts of 'a groups of b' and 'b groups of a' does not reflect the nature of apriority of mathematical knowledge. I suggest we teach the commutative property of multiplication in a way that it helps reveal the operational schema that is necessarily and generally involved in the transformation from the structure of 'a times b' to the structure of 'b times a.' Distributive reasoning is the mental operation that enables children to perform the structural transformation for the commutative property of multiplication by distributing a unit of one quantity across the other quantity. For example, 3 times 4 is transformed into 4 times 3 by distributing each unit of the quantity 3, which results in $3{\times}4=(1+1+1){\times}4=(1{\times}4)+(1{\times}4)+(1{\times}4)+(1{\times}4)=4+4+4=4{\times}3$. It is argued that the distributive reasoning is also critical in learning the subsequent mathematics concepts, such as (a whole number)${\times}10$ or 100 and fraction concept and fraction multiplication.

  • PDF

Student Understanding of Scale: From Additive to Multiplicative Reasoning in the Constriction of Scale Representation by Ordering Objects in a Number Line (척도개념의 이해: 수학적 구조 조사로 과학교과에 나오는 물질의 크기를 표현하는 학생들의 이해도 분석)

  • Park, Eun-Jung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • Size/scale is a central idea in the science curriculum, providing explanations for various phenomena. However, few studies have been conducted to explore student understanding of this concept and to suggest instructional approaches in scientific contexts. In contrast, there have been more studies in mathematics, regarding the use of number lines to relate the nature of numbers to operation and representation of magnitude. In order to better understand variations in student conceptions of size/scale in scientific contexts and explain learning difficulties including alternative conceptions, this study suggests an approach that links mathematics with the analysis of student conceptions of size/scale, i.e. the analysis of mathematical structure and reasoning for a number line. In addition, data ranging from high school to college students facilitate the interpretation of conceptual complexity in terms of mathematical development of a number line. In this sense, findings from this study better explain the following by mathematical reasoning: (1) varied student conceptions, (2) key aspects of each conception, and (3) potential cognitive dimensions interpreting the size/scale concepts. Results of this study help us to understand the troublesomeness of learning size/scale and provide a direction for developing curriculum and instruction for better understanding.