• 제목/요약/키워드: mathematical concepts

검색결과 938건 처리시간 0.024초

초등학교 3학년 수학 교과서에 제시된 '문장 만들기' 활동에 대한 고찰 (A Note on the 'Sentence Posing' Activities in the Third Grade Mathematics Textbooks)

  • 백대현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제23권1호
    • /
    • pp.37-51
    • /
    • 2013
  • 2007년 개정 교육과정의 초등학교 3, 4, 5, 6학년 수학 교과서에는 '약속'으로 제시된 용어의 수학적 개념을 명확히 이해하는지 확인하기 위하여 '문장 만들기'가 신설되었다. 본 논문은 초등학교 3학년 학생들의 문장 만들기 활동에서 나타난 문제점을 바탕으로 문장 만들기의 역할에 대하여 논의하였다. 논의 결과, 전반적으로 교과서에 제시된 문장 만들기의 역할은 충분히 수행되지 못한 것으로 나타났다. 따라서 문장 만들기는 약속으로 제시된 용어를 실생활에서 적절하게 사용할 수 있는지를 확인하는 방안으로 활용되어야 하며, 약속의 개념을 확인하기 위한 역할은 약속의 개념에 따라 선별적으로 적용될 필요가 있었다.

  • PDF

무한 개념의 지도방안과 활용 예제 - 중학교 교육과정을 중심으로 - (A Study on the instruction of the Infinity Concept with suitable examples - focused on Curriculum of Middle School -)

  • 강미광
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권4호
    • /
    • pp.447-465
    • /
    • 2008
  • The purpose of this study is to suggest effective teaching methods on the concept of infinity for students to obtain the right concept in the middle school curriculum. Many people have thought that infinity is something vouge and unapproachable. But, nowadays it is rather something with a precise definition that lies at the core of modern mathematics. To understand mathematics and science very well, it is necessary to comprehend the concept of infinity. But students tend to figure out the properties of infinite objects and limit concepts only through their experience closely related to finite process, and so they are apt to have their spontaneous intuition and misconception about it. Since most of them have cognitive obstacles in studying the infinite concepts and misconception, mathematics teachers need to help them overcome the obstacles and establish the right secondary intuition for the concepts through good examples and appropriate explanation. In this study, we consider the developing process of the concept of infinity in human history and give some comments and suggestions in teaching methods relative to that concept with new suitable examples.

  • PDF

한국과 중국의 초등수학 교과서의 내용과 전개방식 비교 - 수 개념과 덧셈 뺄셈 영역을 중심으로 - (A Comparative Study of Elementary Mathematics Textbooks in Korean and Chinese - Focused in Number, Addition and Subtraction-)

  • 김판수
    • 한국초등수학교육학회지
    • /
    • 제15권3호
    • /
    • pp.599-617
    • /
    • 2011
  • 본 연구의 목적은 2009 개정 수학 교육과정에 따른 교과서 작업에 즈음하여 중국 교과서와 우리나라 교과서를 비교 분석함으로써 현재 교과서의 개선점을 지적하고 새 교과서 작업에 시사점을 주고자 한다. 분석 대상은 중국 인민교육출판사의 초등수학 교과서와 2007 개정 교육과정에 따른 우리나라 교과서이다. 분석 영역은 수와 덧셈, 뺄셈으로 제한했다. 본 연구의 결과는 한국 교과서가 상대적으로 많은 언어적 표현의 사용, 할 일이 정해진 활동, 수학적 개념의 확장에서 유사한 절차 사용, 수와 연산 영역에서 더 큰 수의 사용, 다양하지 못한 수 감각 활동으로 나타났다. 이에 우리나라 교과서가 수학적 흥미와 도전감, 기초기본 개념 형성에서 상대적으로 취약하다는 것을 말해준다.

  • PDF

유치원과 초등 1학년 아동의 수학 교육 연계에 관한 연구 (A Study on the Articulation between Kindergarten and 1st Grade in Mathematics Education)

  • 김숙자;권영례;신인선;김상미
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제4권1호
    • /
    • pp.1-17
    • /
    • 2000
  • The purpose of this study is to analyze the articulation between the kindergarten and 1st grade in mathematics education. for this purpose, the problems of this study selected as follows :(ⅰ) What is the mathematical concepts related between the kindergarten curriculum and the 1st grade curriculum\ulcorner (ⅱ) How is the mathematics classroom in the kindergarten and 1st grade\ulcorner (ⅲ) Which instructional materials are used in the kindergarten and the 1st grade\ulcorner (ⅳ) What is the new direction of articulation between the kindergarten and first grade in mathematics education\ulcorner The results of this study are as follows : (ⅰ) According to examining each curriculum the focus is on understanding the basic concepts of number in the kindergarten, on the concepts of number, addition and subtraction in the 1st grade. (ⅱ) By being analyzed the mathematics classrooms of the kindergarten and the 1 st grade, it is different the focus of lessons or the teaching strategies. (ⅲ) As a result of analysing the teaching plans in the kindergarten and the survey in the first grade teachers, used instructional materials are manipulative ones. While mainly used materials are puzzles and blocks in kindergarten, a paduk stone, number cards, sankagi are used in 1st grade. (ⅳ) Finally, we propose the direction of articulation between the kindergarten and 1st grade in mathematics education.

  • PDF

ON 𝜙-SCHREIER RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1057-1075
    • /
    • 2016
  • Let R be a ring in which Nil(R) is a divided prime ideal of R. Then, for a suitable property X of integral domains, we can define a ${\phi}$-X-ring if R/Nil(R) is an X-domain. This device was introduced by Badawi [8] to study rings with zero divisors with a homomorphic image a particular type of domain. We use it to introduce and study a number of concepts such as ${\phi}$-Schreier rings, ${\phi}$-quasi-Schreier rings, ${\phi}$-almost-rings, ${\phi}$-almost-quasi-Schreier rings, ${\phi}$-GCD rings, ${\phi}$-generalized GCD rings and ${\phi}$-almost GCD rings as rings R with Nil(R) a divided prime ideal of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain, almost domain, almost-quasi-Schreier domain, GCD domain, generalized GCD domain and almost GCD domain, respectively. We study some generalizations of these concepts, in light of generalizations of these concepts in the domain case, as well. Here a domain D is pre-Schreier if for all $x,y,z{\in}D{\backslash}0$, x | yz in D implies that x = rs where r | y and s | z. An integrally closed pre-Schreier domain was initially called a Schreier domain by Cohn in [15] where it was shown that a GCD domain is a Schreier domain.

A Structure of Domain Ontologies and their Mathematical Models

  • Kleshchev, Alexander S.;Artemjeva, Irene L.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.410-420
    • /
    • 2001
  • A primitive conceptualization is defined as the set of all intended situations. A non-primitive conceptualization is defined as the set of all the pairs every of which consists of an intended knowledge system and the set of all the situations admitted by the knowledge system. The reality of a domain is considered as the set of all the situation which have ever taken place in the past, are taking place now and will take place in the future. A conceptualization is defined as precise if the set of intended situations is equal to the domain reality. The representation of various elements of a domain ontology in a model of the ontology is considered. These elements are terms for situation description and situations themselves, terms for knowledge description and knowledge systems themselves, mathematical terms and constructions, auxiliary terms and ontological agreements. It has been shown that any ontology representing a conceptualization has to be non-primitive if either (1) a conceptualization contains intended situations of different structures, or (2) a conceptualization contains concepts designated by terms for knowledge description, or (3) a conceptualization contains concept classes and determines properties of the concepts belonging to these classes, but the concepts themselves are introduced by domain knowledge, or (4) some restrictions on meanings of terms for situation description in a conceptualization depend on the meaning of terms for knowledge description.

  • PDF

이공계열 대학 신입생들의 함수의 극한과 연속 개념 이해에 관한 연구 (A Study on the Understanding of Limit and Continuous Concepts of Function of Freshmen in Science and Engineering College)

  • 서종진;박진한;윤민;강점란
    • 한국학교수학회논문집
    • /
    • 제23권4호
    • /
    • pp.523-556
    • /
    • 2020
  • 이공계열 대학 신입생들이 함수의 극한, 함수의 연속과 관련된 기초 개념을 어느 정도 이해하고 있는지 조사·분석하였다. 조사 결과, 개념들을 연결하여 이해한 대학생들에 비해 그렇지 못한 대학생들이 많이 나타났다. 그러므로 대학 교양 수학을 지도하기 위해 대학 신입생들이 기초수학 개념을 어느 정도 연결하여 이해하고 있는지 조사·분석하여 대학생 개개인에게 적합한 교수·학습법을 적용할 필요성이 있다.

5학년 아동들의 수학적 의사소통 능력에 관한 사례 연구 - 말하기, 쓰기 능력을 중심으로 - (A case study on 5th graders' mathematical communication ability - focused on speaking and writing abilities -)

  • 한혜숙;노수혁
    • 한국수학교육학회:학술대회논문집
    • /
    • 한국수학교육학회 2010년도 제44회 전국수학교육연구대회
    • /
    • pp.83-97
    • /
    • 2010
  • The purposes of this study were to explore in depth about 5th graders' mathematical speaking and writing abilities and to investigate differences on those abilities. The study involved 3 5th graders and their speaking and writing abilities in geometry area were analyzed. According to the results of the study, the children had difficulties in selecting and using appropriate mathematical languages to explain mathematical concepts, mathematical ideas, and problem solving steps. The children who participated in the study showed higher ability in speaking than writing.

  • PDF

WIJSMAN LACUNARY IDEAL INVARIANT CONVERGENCE OF DOUBLE SEQUENCES OF SETS

  • Dundar, Erdinc;Akin, Nimet Pancaroglu
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.345-358
    • /
    • 2020
  • In this paper, we study the concepts of Wijsman lacunary invariant convergence, Wijsman lacunary invariant statistical convergence, Wijsman lacunary ${\mathcal{I}}_2$-invariant convergence (${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$), Wijsman lacunary ${\mathcal{I}}^*_2$-invariant convergence (${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$), Wijsman p-strongly lacunary invariant convergence ([W2Nσθ]p) of double sequence of sets and investigate the relationships among Wijsman lacunary invariant convergence, [W2Nσθ]p, ${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$ and ${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$. Also, we introduce the concepts of ${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$-Cauchy double sequence and ${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$-Cauchy double sequence of sets.

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK'S SENSE

  • Ramadan, A.A.;Abbas, S.E.;El-Latif, A.A. Abd
    • 대한수학회논문집
    • /
    • 제21권3호
    • /
    • pp.497-514
    • /
    • 2006
  • In this paper, we used the supra fuzzy topology which generated from a fuzzy bitopological space [1] to introduce and study the concepts of continuity (resp. openness, closeness) of mapping, separation axioms and compactness for a fuzzy bitopological spaces. Our definition preserve much of the correspondence between concepts of fuzzy bitopological spaces and the associated fuzzy topological spaces.