• Title/Summary/Keyword: material factors

Search Result 4,103, Processing Time 0.031 seconds

Failure Mechanism Analysis and Performance Change of Ballistic Resistance Material on Wet Condition (침수조건에 따른 방탄재료의 성능변화와 파괴거동 분석)

  • Tae, Won-Seok;Kim, Gun-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.803-810
    • /
    • 2013
  • In this paper, we have verified the performance of ballistic resistance material on wet condition. Considering Korea terrain, soldiers may face many rivers and streams. However, bullet-proof jacket has no waterproofing and there's no water-proof standard in Military. Wearing wet bullet-proof jacket, soldiers can't be protected properly because of the decrement of jacket. Thus, we measure the performance of existing material on wet condition and analyze failure mechanism in order to indicate factors to improve bullet-proof jacket.

Effects of Phase Change Material Floor Heating Systems using Direct Solar Gain on Cooling Load (직달일사를 이용한 잠열축열식 바닥난방 시스템이 냉방부하에 미치는 영향에 대한 검토)

  • Kim, Soo-Kyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • In this research, the effect of a heating system, which is powered by direct solar energy accumulated in phase change material (PCM) as heat storage material installed on the floor surface, on the cooling load was studied. Cooling load of a test building designed for this research was measured with fan coil unit and factors affecting it were also estimated. Experiments were performed with and without PCM installed on the building floor to understand the effect of the PCM on the cooling load. Additionally, to confirm the experiments results, the prediction calculation formula by average outside temperature and integrated solar radiation was composed using multivariate regression model. The results suggested that the heating system with PCM on the floor surface has the potential to shift electric power peak by radiating heat, stored during the daytime in it, at night, not increasing the total cooling load much.

Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries (고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학)

  • Sion Ha;Kyeong-Ho Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

Analyzing students' engagement factors in flipped mathematics class (반전학습(flipped learning)을 적용한 수학 수업에서 학생들의 참여 요인 탐색)

  • Yoon, Jungeun;Cho, Hyungmi;Kwon, Oh Nam
    • The Mathematical Education
    • /
    • v.55 no.3
    • /
    • pp.299-316
    • /
    • 2016
  • The abilities for 21st learners have recently changed and learners' engagement is emphasized. In flipped classroom, students learn the prerequisite concepts of the lecture online in advance and perform various types of activities based on interaction and engagement. As students in flipped classroom construct knowledge actively, students' engagement is very important. Therefore, I conducted a research of flipped mathematics class to help teachers to better understand students' engagement in flipped mathematics class. The flipped mathematics class was conducted for about 3 weeks with 29 middle school students and one teacher. Video and audio recordings, completed student worksheets and interview data were collected and analyzed using the qualitative method. The results of this study showed that students' engagement is influenced by diverse factors. Engagement factors were categorized by teacher factors, community factors, material factors, tasks and strategy factors, classroom culture factors. Each factor facilitates or suppresses behavioral, emotional, cognitive, agentic engagements, and sometimes several factors are related. The results of this study increase understanding of engagement through the example of a case study on flipped mathematics class.

The DOE Based Robust Design to Reduce the Brake Squeal Noise (실험계획법에 기반한 브레이크 스퀼 노이즈 저감을 위한 강건 설계)

  • Kwon, Seong-Jin;Kim, Mun-Sung;Lee, Bong-Hyun;Lee, Dong-Won;Bae, Chul-Yong;Kim, Chan-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.126-134
    • /
    • 2007
  • Although there has been substantial research on the squeal noise for the automotive brake system, robust design issues with respect to control factors equivalent to design variables in optimization, noise factors due to system uncertainties, and signal factors designed to accommodate a user-adjustable setting still need to be addressed. For the purpose, the robust design applied to the disk brake system has been investigated by DOE (Design of Experiments) based Taguchi analysis with dynamic characteristics. The specific goal of this methodology is to identify a design with linear signal-response relationship, and variability minimization. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. As the practical robust design to reduce the brake squeal noise, material properties of pad, disk, and backplate, thickness and geometry of pad are selected as control factors, material properties of pad and disk, and the contact stiffness have been considered as noise factors, and friction coefficient between pad and disk is chosen as a signal factor. Through the DOE based robust design, the signal-to-noise ratio and the sensitivity for each orthogonal array experiment have been analyzed. Also, it has been proved that the proposed robust design is effective and adequate to reduce the brake squeal noise.

A Study on the Difference among Journal Publisher and among the Academic Disciplines of Factors Influencing the Adoption of Open Access (오픈 액세스 수용에 영향을 미치는 요인의 학술지 발행기관별 차이 및 학문분야별 차이에 관한 연구)

  • Ko, Young-Man;Kim, Bo-Ae;Park, Tae-Sik;Lee, Kil-Shin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.43 no.4
    • /
    • pp.431-449
    • /
    • 2009
  • The purpose of this study was to examine the differences among journal publishers and among academic disciplines on factors influencing the adoption of open access. Through the analysis of previous studies, we identified five such factors: journal publishers' attitudes, ability, confidence, social influence and material resources available for open access. The results show that a significant difference among journal publishers from social influence factor. This result implies that efforts toward journal subscribers to have a positive attitude and material resources are important factors for journal publishers. There was a significant difference among academic disciplines in terms of journal publishers' attitudes and ability factors. The findings of this result imply that academic journals need to share more information about open access and that priority should be given to journals that have the ability to influence the adoption of open access.

Resistance Increasing Factor of Connected-pile Foundation for Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 말뚝기초의 저항력증가계수)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.31-41
    • /
    • 2012
  • Pile foundation for transmission tower constructed in weak ground can cause the damage of the tower due to the different settlement between the foundations. In Japan and USA, connected-pile foundations whose 4 foundations are connected each other by beams were used for transmission tower (TEPCO 1988, IEEE 2001). Resistance increasing factors for connected-pile foundation signify increasing amount of resistance due to the effect of connected-pile material. In this study, we performed model lateral load tests of connected-pile foundations for transmission tower and found the resistance increasing factors for connected-pile foundation. The tests were performed in silty clay, and the resistance increasing factors were founded in various conditions that lateral load directions and height, the stiffness of beams in the connected-pile foundations were changed. The resistance increasing factors from our research were presented as a function of normal lateral loading height and normal stiffness of the connected-pile material. The resistances which were estimated from the resistance increasing factors were similar to measured values.

The factors that influence postoperative stability of the dental implants in posterior edentulous maxilla

  • Kim, Yun-Ho;Choi, Na-Rae;Kim, Yong-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.2.1-2.6
    • /
    • 2017
  • Background: All clinicians are aware of the difficulty of installing a dental implant in posterior maxilla because of proximate position of maxillary sinus, insufficient bone width, and lower bone density. This study is to examine which factors will make the implantation in the posterior maxilla more difficult, and which factors will affect the postoperative implant stability in this region. Methods: Five hundred seventy-three fixtures on the maxilla posterior were included for this study from all the patients who underwent an installation of the dental implant fixture from January 2010 to December 2014 at the Department of Oral and Maxillofacial Surgery in Pusan National University Dental Hospital (Yangsan, Korea). The postoperative implant stability quotient (ISQ) value, fixture diameter and length, presence of either bone graft or sinus lift, and graft material were included in the reviewed factors. The width and height of the bone bed was assessed via preoperative cone beam CT image analysis. The postoperative ISQ value was taken just before loading by using the OsstellTM $mentor^{(R)}$ (Integration Diagnostics AB, Gothenburg, Sweden). The t test and ANOVA methods were used in the statistical analysis of the data. Results: Mean ISQ of all the included data was 79.22. Higher initial bone height, larger fixture diameter, and longer fixture length were factors that influence the implant stability on the posterior edentulous maxilla. On the other hand, the initial bone width, bone graft and sinus elevation procedure, graft material, and approach method for sinus elevation showed no significant impact associated with the implant stability on the posterior edentulous maxilla. Conclusions: It is recommended to install the fixtures accurately in a larger diameter and longer length by performing bone graft and sinus elevation.

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

A manufacturability measurement for design for manufacturing in net shape process

  • Lee, Chang-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.467-477
    • /
    • 1994
  • The objective of this research is to develop a manufacturability measurement model for process and material screening. The process and material screening is the key requirement for implementing the Design for Manufacturability (Concurrent Engineering). A computerized system realizing this model then is developed to aid designers. Identification of the key factors which influence technical manufacturability, decision variables and their characteristics, conceptual framework for implementing the model are suggested. Manufacturability measure for quantifying the consistency of between the product requirements and the manufacturing capability is important contribution of this research. The focus is on net shape manufacturing process such as diecasting, forging, metal forming and injection molding.