• Title/Summary/Keyword: material dynamic stiffness

Search Result 235, Processing Time 0.025 seconds

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀룰로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-Oh;Kim, Kyoung-Woo;Yang, Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-462
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose absorber has been developed with waste paper through adjustment of various mix proportions. The developed cellulose absorber has been tested for its acoustic properties such as absorption coefficient and dynamic stiffness. The absorption coefficient was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorption coefficient and 4.7 $MN/m^3$ was indicated in dynamic stiffness. Also, for practical use of developed absorbers as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool absorbers and constructed drywall of gypsum board. The results have shown 55 dB(Rw) of sound reduction index in glass-wool wall and 46 dB(Rw) in cellulose.

Dynamic Stiffness and Frequency Response Analysis for the Development of Magnesium Oil Pans (마그네슘 합금 오일팬 개발을 위한 동적 강성 및 주파수 응답 해석)

  • Shin, Hyun-Woo;Chung, Yeon-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The oil pan is an important factor for the noise behavior of the engine system. In this paper a new Magnesium oil pan was designed and analyzed to replace the current Aluminium oil pan. Dynamic stiffness and sound pressure level of the newly designed Mg oil pan were compared with the AI oil pan using the finite element method. NVH characteristics of the Mg oil pan is slightly insufficient when we changed the material of the oil pan from Al to Mg without modifying the design. Some design modifications of the Mg oil pan resulted in equal or superior characteristics compared to the Al oil pan. New ribs were added to stiffen the structure of the Mg oil pan. Thickness of thin plate area was increased to reduce the radiated noise. Through the changes of shape, higher dynamic stiffness than the current Al oil pan were achieved. Results of frequency response analysis show that we can reduce the sound pressure level of the oil pan if we increase the thickness of the thin plate area. It is shown that the new Mg oil pan could reduce the weight of the engine system and improve NVH quality of an automobile.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

Consideration of Static-strain-dependent Dynamic Complex Modulus in Dynamic Stiffness Calculation of Viscoelastic Mount/Bushing by Commercial Finite Element Codes (점탄성 제진 요소의 복소동강성계수 산출을 위한 상용유한요소 코드 이용시 복소탄성계수의 정하중 의존성 반영 방법)

  • Kim, Kwang-Joon;Shin, Yun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.372-379
    • /
    • 2006
  • Little attention has been paid to static-strain-dependence of dynamic complex modulus of viscolelastic materials in computational analysisso far. Current commercial Finite Element Method (FEM) codes do not take such characteristics into consideration in constitutive equations of viscoelastic materials. Recent experimental observations that static-strain-dependence of dynamic complex modulus of viscolelastic materials, especially filled rubbers, are significant, however, require that solutions somehow are necessary. In this study, a simple technique of using a commercial FEM code, ABAQUS, is introduced, which seems to be far more cost/time saving than development of a new software with such capabilities. A static-strain-dependent correction factor is used to reflect the influence of static-strains in Merman model, which is currently the base of the ABAQUS. The proposed technique is applied to viscoelastic components of rather complicated shape to predict the dynamic stiffness under static-strain and the predictions are compared with experimental results.

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Numerical Study on the Dynamic Response in Elastomeric Oil Seals

  • Shim, Woo Jeon;Sung, Boo-Yong;Kim, Chung Kyun
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • Oil seals will experience a small amplitude dynamic excitation due to the shaft eccentricity as well as out-of-roundness of the shaft. The direct integration method is selected to analyze the time domain response of the seal lip-shaft contact. The physical properties of rubber seal materials are experimentally analyzed. Effects of both frequency and temperature on the material stiffness behavior are investigated for the linear viscoelastic materials of the seal. Using the nonlinear transient model, a finite element analysis of the lip-shaft contact behaviors under dynamic conditions is presented as a function of the shaft eccentricity, the shaft interference and the garter spring stiffness. The FEM results based on the experimental data indicate that the increased rotating speed may produce the separation conditions. These results will be very useful in predicting the leakage of oil seals under dynamic conditions.

  • PDF

Analysis of Correlation between the Vibration Transmissions and the Dynamic Characteristics for Floor Impact Sound Insulation Materials through Model Test (모의실험을 통한 완충재별 진동전달량과 동적특성과의 상관성 분석에 관한 연구)

  • Kim, Heung-Sik;Joo, Si-Woong;Jin, Pil-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1425-1431
    • /
    • 2006
  • In this study, An analysis of correlation between the vibration transmissions and the dynamic characteristics for floor impact sound insulation materials through model test was carried out. As the results, the correlation coefficients between the vibration transmissions and the dynamic characteristics for floor impact sound insulation materials were over 0.8 at the heavy and light floor impact source and less dynamic stiffness was more effective in reducing the vibration transmission.

  • PDF

Material Selection Optimization of A-Pillar and Package Tray Using RBFr Metamodel for Minimizing Weight (경량화를 위한 RBFr 메타모델 기반 A-필러와 패키지 트레이의 소재 선정 최적화)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, we propose the method of optimally selecting material of front pillar (A-pillar) and package tray for minimizing weight while satisfying vehicle requirements on static stiffness and dynamic stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness and dynamic stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the radial basis function regression (RBFr). Using the RBFr models, optimization is carried out an evolutionary algorithm that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 49.8% while satisfying all the design constraints.

Dynamic behavior of the one-stage gear system with uncertainties

  • Beyaoui, M.;Guerine, A.;Walha, L.;Hami, A. El;Fakhfakh, T.;Haddar, M.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.443-458
    • /
    • 2016
  • In this paper, we propose a method for taking into account uncertainties based on the projection on polynomial chaos. Due to the manufacturing and assembly errors, uncertainties in material and geometric properties, the system parameters including assembly defect, damping coefficients, bending stiffness and traction-compression stiffness are uncertain. The proposed method is used to determine the dynamic response of a one-stage spur gear system with uncertainty associated to gear system parameters. An analysis of the effect of these parameters on the one stage gear system dynamic behavior is then treated. The simulation results are obtained by the polynomial chaos method for dynamic analysis under uncertainty. The proposed method is an efficient probabilistic tool for uncertainty propagation. The polynomial chaos results are compared with Monte Carlo simulations.

A Study on Impact Sound Insulation Properties of EPDM Micro Cellular Pad (에틸렌-프로필렌-디엔 삼원 공중합 (EPDM) 발포체의 충격음 저감 특성에 관한 연구)

  • Lee, Kyung-Won;Lee, Jung-Hee;Sohn, Ho-Soung
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2000
  • In order to investigate the possibility of EPDM micro cellular pad (MCP) as an impact sound insulation product, we studied static/dynamic properties and vibration transfer characteristics of EPDM MCP depending on shape, thickness, degrees of foaming by using material test system (MTS) and lab scale mock-up test apparatus. Static/dynamic rigidity is increased when shape is simple. thickness and degrees of foaming low. We could see that dynamic stiffness is proportional to the transmissibility of EPDM MCP. When dynamic stiffness is increased, characteristic peak at transmissibility curve moves high frequency range or snows increase of maximum value of transmissibility. For lab scale mock-up test and finite element method, EPDM MCP shows low vibration velocity and superior mode shape to just concrete plus slab structure. We could confirm that possibility of EPDM MCP as a impact sound insulation product is high.

  • PDF