• Title/Summary/Keyword: massive multi-input multi-output (MIMO)

Search Result 17, Processing Time 0.019 seconds

Effects of Channel Aging in Massive MIMO Systems

  • Truong, Kien T.;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.338-351
    • /
    • 2013
  • Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multi-user MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multicell network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

Detection Techniques for High Dimensional Spatial Multiplexing MIMO System (다차원 공간다중화 MIMO 시스템의 복조 기법)

  • Lim, Sung-Ho;Kim, Kyungsoo;Choi, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.413-423
    • /
    • 2014
  • With the increasing demands on high data rate, there has been growing interests in multi-input multi-output (MIMO) technology based on spatial multiplexing (SM) since it can transmit independent information in each spatial stream. Recent standards such as 3GPP LTE-advanced and IEEE 802.11ac support up to eight spatial streams, and massive MIMO and mm-wave systems that are expected to be included in beyond 4G systems are considering employment of tens to hundreds of antennas. Since the complexity of the optimum maximum likelihood based detection method increases exponentially with the number of antennas, low-complexity SM MIMO detection becomes more critical as the number of antenna increases. In this paper, we first review the results on the detection schemes for SM MIMO systems. In addition, massive MIMO reception schemes based on simple linear filtering which does not require exponential increment of complexity will be explained, followed by brief description on receiver design for future high dimensional SM MIMO systems.

DOA-based Beamforming for Multi-Cell Massive MIMO Systems

  • Hu, Anzhong
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.735-743
    • /
    • 2016
  • This paper proposes a direction-of-arrival (DOA)-based beamforming approach for multi-cell massive multiple-input multiple-output systems with uniform rectangular arrays (URAs). The proposed approach utilizes the steering vectors of the URA to form a basis of the spatial space and selects the partial space for beamforming according to the DOA information. As a result, the proposed approach is of lower computational complexity than the existing methods which utilize the channel covariance matrices. Moreover, the analysis demonstrates that the proposed approach can eliminate the interference in the limit of infinite number of the URA antennas. Since the proposed approach utilizes the multipaths to enhance the signal rather than discarding them, the proposed approach is of better performance than the existing low-complexity method, which is verified by the simulation results.

Before/After Precoding Massive MIMO Systems for Cloud Radio Access Networks

  • Park, Sangkyu;Chae, Chan-Byoung;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • In this paper, we investigate two types of in-phase and quadrature-phase (IQ) data transfer methods for cloud multiple-input multiple-output (MIMO) network operation. They are termed "after-precoding" and "before-precoding". We formulate a cloud massive MIMO operation problem that aims at selecting the best IQ data transfer method and transmission strategy (beamforming technique, the number of concurrently receiving users, the number of used antennas for transmission) to maximize the ergodic sum-rate under a limited capacity of the digital unit-radio unit link. Based on our proposed solution, the optimal numbers of users and antennas are simultaneously chosen. Numerical results confirm that the sum-rate gain is greater when adaptive "after/before-precoding" method is available than when only conventional "after-precoding" IQ-data transfer is available.

Low-Complexity Massive MIMO Detectors Based on Richardson Method

  • Kang, Byunggi;Yoon, Ji-Hwan;Park, Jongsun
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.326-335
    • /
    • 2017
  • In the uplink transmission of massive (or large-scale) multi-input multi-output (MIMO) systems, large dimensional signal detection and its hardware design are challenging issues owing to the high computational complexity. In this paper, we propose low-complexity hardware architectures of Richardson iterative method-based massive MIMO detectors. We present two types of massive MIMO detectors, directly mapped (type1) and reformulated (type2) Richardson iterative methods. In the proposed Richardson method (type2), the matrix-by-matrix multiplications are reformulated to matrix-vector multiplications, thus reducing the computational complexity from $O(U^2)$ to O(U). Both massive MIMO detectors are implemented using a 65 nm CMOS process and compared in terms of detection performance under different channel conditions (high-mobility and flat fading channels). The hardware implementation results confirm that the proposed type1 Richardson method-based detector demonstrates up to 50% power savings over the proposed type2 detector under a flat fading channel. The type2 detector indicates a 37% power savings compared to the type1 under a high-mobility channel.

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki;Baek, Seungkwon
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.582-591
    • /
    • 2018
  • In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

Analysis of Computational Complexity for Cascade AOA Estimation Algorithm Based on Single and Double Rim Array Antennas (단일 및 이중 림 어레이 안테나 기반 캐스케이드 AOA 추정 알고리즘의 계산복잡도 분석)

  • Tae-Yun, Kim;Suk-Seung, Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1055-1062
    • /
    • 2022
  • In order to use the Massive MIMO (Multi Input Multi Output) technology using the massive array antenna, it is essential to know the angle of arrival (AOA) of the signal. When using a massive array antenna, the existing AOA estimation algorithm has excellent estimation performance, but also has a disadvantage in that computational complexity increases in proportion to the number of antenna elements. To solve this problem, a cascade AOA estimation algorithm has been proposed and the performance of a single-shaped (non)massive array antenna has been proven through a number of papers. However, the computational complexity of the cascade AOA estimation algorithm to which single and double rim array antennas are applied has not been compared. In this paper, we compare and analyze the computational complexity for AOA estimation when single and double rim array antennas are applied to the cascade AOA estimation algorithm.

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

Compressed Channel Feedback for Correlated Massive MIMO Systems

  • Sim, Min Soo;Park, Jeonghun;Chae, Chan-Byoung;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Massive multiple-input multiple-output (MIMO) is a promising approach for cellular communication due to its energy efficiency and high achievable data rate. These advantages, however, can be realized only when channel state information (CSI) is available at the transmitter. Since there are many antennas, CSI is too large to feed back without compression. To compress CSI, prior work has applied compressive sensing (CS) techniques and the fact that CSI can be sparsified. The adopted sparsifying bases fail, however, to reflect the spatial correlation and channel conditions or to be feasible in practice. In this paper, we propose a new sparsifying basis that reflects the long-term characteristics of the channel, and needs no change as long as the spatial correlation model does not change. We propose a new reconstruction algorithm for CS, and also suggest dimensionality reduction as a compression method. To feed back compressed CSI in practice, we propose a new codebook for the compressed channel quantization assuming no other-cell interference. Numerical results confirm that the proposed channel feedback mechanisms show better performance in point-to-point (single-user) and point-to-multi-point (multi-user) scenarios.

Combined Hybrid Beamforming and Spatial Multiplexing for Millimeter-Wave Massive MIMO Systems (밀리미터파 Massive MIMO 시스템을 위한 공간 다중화 및 하이브리드 빔 형성)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Nam-Il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.123-129
    • /
    • 2018
  • Recently, as required wireless communication traffic increase, millimeter wave mobile technologies that can secure broadband spectrum are gaining attention. However, the path loss is high in the millimeter wave channel. Massive MIMO system is being researched in which can complement the path loss by beamforming by equiped large-scale antenna at the base station. While legacy beamforming techniques have analog and digital methods, practical difficulties exist for application to massive MIMO systems in terms of system complexity and cost. Therefore, this paper studies a hybrid beamforming scheme for massive MIMO system in the millimeter wave band. Also this paper considers spatial multiplexing scheme to serve multi-users with multiple received antennas. Gains of the beamforming and the spatial multiplexing schemes are evaluated by analyzing the spectral efficiency.