• Title/Summary/Keyword: mass transfer coefficients

Search Result 360, Processing Time 0.024 seconds

Flow Boiling Heat Transfer Characteristics of R22 Alternative Refrigerants in a Horizontal Smooth Tube (R22 대체냉매의 수평원관내 흐름비등 열전달 특성)

  • 한재웅;김신종;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.242-251
    • /
    • 2001
  • Flow boiling heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured for a horizontal plain tube. The test section was made of a copper tube of 8.8mm inner diameter and 1000mm length respectively. The refrigerant was heated by passing hot water through an annulus surrounding the test section. All tests were performed at a fixed refrigerant saturation temperature of 5C with mass fluxes of 100~300 kg/m2,/TEX>s. HTCs were measured by two methods: the direct wall temperature measurement method and the indirect Wilson plot method. Experimental results showed that the Wilson plot method was affected greatly by the external test conditions and yielded inconsistent results. For the mass flux of 100kg/m2,/TEX>s, HTCs were almost constant regardless of the quality for a given refrigerant HTCs of R134a and R407C were similar to those of R22 while those of R410A were 60% higher than those of R22. For the mass fluxes of 200 and 300kg/m2,/TEX>s, HTCs of R407C were almost the same as those of R22, while HTCs of R134a and R410A were 12-13% and 20~23% higher than those of R22 respectively. For pure refrigerant, Shah\`s correlation yielded a good agreement with the measured data both qualitatively and quantitatively.

  • PDF

Flow Condensation Heat Transfer Characteristic of Hydrocarbon Refrigerants and DME in Horizontal Plain Tube (탄화수소계 냉매들과 DME의 수평 평활관내 흐름 응축 열전달 특성)

  • Park, Ki-Jung;Lee, Min-Hang;Park, Hyun-Shin;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.545-554
    • /
    • 2007
  • Flow condensation heat transfer coefficients(HTCs) of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of 40±0.2C with mass fluxes of 100, 200, 300kg/m2s and heat flux of 7.37.7kW/m2. The data are obtained in the vapor Quality range of 1090. Test results show that at same mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6% respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 30%. Finally, the pressure drop increase as the mass flux and Quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.

Thermal Performance Characteristics of Closed-Wet Cooling Tower (밀폐형 냉각탑의 열성능 특성에 관한 실험적 연구)

  • Sarker, M.M.A.;Kim, E.P.;Moon, C.G.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.88-92
    • /
    • 2005
  • The experiment of thermal performance about closed-wet cooling tower was conducted in this study. A closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from the top of the heat exchanger to the bottom side in the inner part of the tube, and spray water flows in the gravitational direction in the outer side. Air comes in direct contact with the spray water at the outer side of the tube while passing from the lower the upper part having a counterflow to the spray water. The heat transfer pipe used in this experiment is a bare-type tube having an outer diameter of 15.88mm. The heat exchanger is consisted of seven rows and fifteen columns. In this experiment, thermal performance of the cooling tower is derived from overall heat transfer coefficients between the process fluid and sprayed water and volumetric overall mass transfer coefficient between sprayed water and air.

  • PDF

An Experimental Study on In-Plate Evaporation Heat Transfer and Flow Characteristics for Automobile (자동차용 증발기 판 내의 증발 열전달 및 유동 특성에 관한 실험적 연구)

  • Kwak, Kyung-Min;Joo, Sang-Woo;Jung, Woo-Youl;Kim, Taek-Keun;Kim, Kwang-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • An experimental study was performed to evaluate the in-plate evaporation heat transfer and flow characteristics of a evaporator used in automobile. Two test-cores with different heat transfer area, bead-shape and bead-array were tested, A type and B type. For the heat transfer, Nusselt number for B type test-core reaches a value nearly equal to the one for A type test-core, in the whole range of equivalent Reynolds number. But, for the same mass flow rate of refrigerant, hA for B type test-core becomes higher with the increase of the mass quality of refrigerant than for A type test-core. In a flow visualization experiment, the wake zone of refrigerant circulating at u-turn position of plate is observed.

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

An Experimental Study on Condensation Heat Transfer Characteristics and Pressure Drop of Plate Heat Exchangers using the Alternative Refrigerant R410A (대체 냉매 R410A를 적용한 판형열교환기의 응축열전달 특성 및 압력강하에 대한 실험적 연구)

  • Kim, Y.H.;Han, D.H.;Lee, K.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.220-225
    • /
    • 2001
  • The plate heat exchanger is characterized. by low pressure drop and high heat transfer coefficient. The experimental study has been performed on the condensation heat transfer and pressure drop characteristics of the plate heat exchangers in this study. In the present study, a brazed type plate heat exchanger was investigated at a chevron angle of 45,55,and70 with R410A. Condensation temperatures were varied from 20Cand30C, and mass flux was ranged from 1334kg/m2s with constant heat flux (=5kw/m2). The heat transfer coefficient and pressure drop increased with the chevron angle. Average condensation heat transfer coefficients and pressure drops are decreased with increasing condensation tempeature.

  • PDF

Heat transfer enhancement in electronic modules using a turbulence promoter (난류촉진체에 의한 전자칩의 열전달촉진에 관한 연구)

  • 박시우;정인기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.861-870
    • /
    • 1999
  • An experimental study was carried out to investigate the effects of using various shapes of turbulence promoter on the heat-transfer enhancement of 2-D and 3-D arrays of rectangular modules in a rectangular channel for design of noiseless and low-powered cooling fan in the electronic systems. Measurements of heat/mass transfer coefficients were made using a naphthalene sublimation technique, and the friction factors were measured for Reynolds numbers in the range3.3\time103~1.6\time104. Flow visualization was peformed by oil-film method. It was found that heat transfer and pressure drop increased remarkably due to the existence of the promoter. The results of the performance evaluation based on equal pumping power were showed that substantial heat-transfer enhancement was obtained at low Reynolds number range by use of a turbulence promoter.

  • PDF

Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on Enhanced Tubes (열전달 촉진관에서 2원 혼합냉매의 외부 응축열전달계수)

  • 김경기;서강태;채순남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2002
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC134a and HF0134a/HCF0123 at various compositions were measured on both low fin and Turbo-C enhanced tubes of 19.0 mm outside diameter All data were taken at the vapor temperature of 39C with a wall subcooling of 3- 8 K. Test results showed that HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by the mass fraction weighting of the pure compo- nents'HTCs. Also the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased as the wall subcooling increased, which was due to the sudden break up of the vapor diffusion film with an increase in wall subcooling. Finally, heat transfer enhancement ratios for mixtures were found to be much lower than those of pure fluids.

Modeling of the Drying Process in Paper Plants

  • Hwang, Ki-Seok;Yeo, Yeong-Koo;Lee, Yeong-Jun;Kang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.272-290
    • /
    • 2003
  • In this study a model for the drying process in paper production plants was developed based on the mass and heat balances around drying cycles. Relationships for the heat transfer coefficients between the web and the air as well as between the drying cylinder and the web were extracted from the closed-loop plant operation data. It was found that the heat transfer coefficients could be represented effectively in terms of moisture content, basis weight and reel velocity. The effectiveness of the proposed model was illustrated through numerical simulations. From the comparison with the operation data, the proposed model represents the paper plant being considered with sufficient accuracy.

  • PDF

The Condensation Heat Transfer of R-22 and R-410A in an Inner Diameter Tube of 1.77 mm (내경 1.77 mm관내 R-22와 R-410A의 응축열전달)

  • Son, Chang-Hyo;Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2008
  • The condensation heat transfer coefficients of R-22 and R-410A in a small diameter tube were investigated. The main components of the refrigerant loop consist of a receiver, a variable-speed pump, a mass flowmeter, an evaporator (preheater), and a condenser (test section). The test section consists of smooth, horizontal copper tube of 3.38 mm outer diameter and 1.77 mm inner diameter. The refrigerant mass fluxes varied from 450 to 1050kg/(m2s) and the average inlet and outlet qualities were 0.05 and 0.95. The main results were summarized as follows : the condensation heat transfer coefficient also increases with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.

  • PDF