• Title/Summary/Keyword: mass propagation system

Search Result 138, Processing Time 0.031 seconds

Implementation of a Portable Electronic Nose System for Field Screening (필드 스크린을 위한 휴대용 전자코 시스템의 구현)

  • Byun, Hyung-Gi;Lee, Jun-Sub;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • There is currently much interest in the development of instruments that emulate the senses of humans. Increasingly, there is demand for mimicking the human sense of smell, which is a sophisticated chemosensory system. An electronic nose system is applicable to a large area of industries including environmental monitoring. We have designed a protable electronic nose system using an array of commercial chemical gas sensors for recognizing and analyzing the various odours. In this paper, we have implemented a portable electronic nose system using an array of gas sensors for recognizing and analyzing VOCs (Volatile Organic Compounds) in the field. The accuracy of a portable electronic nose system may be lower than an instrument such as GC/MS (Gas Chromatography/Mass Spectrometer). However, a portable electronic nose system could be used on the field and showed fast response to pollutants in the field. Several different algorithms for odours recognition were used such as BP (Back-Propagation) or LM-BP (Levenberq-Marquardt Back-Propagation). We applied RBF (Radial Basis Function) Network for recognition and quantifying of odours, which has simpler and faster compared to the previously used algorithms such as BP and LM-BP.

Development of FEA-based Metal Sphere Signal Map for Nuclear Power Plant Structure (유한요소해석 기반 원전 기계구조물 충격-질량지표 개발)

  • Moon, Seongin;Kang, To;Han, Soonwoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.38-47
    • /
    • 2018
  • For safe operation of nuclear power plants, a loose-part monitoring system (LPMS) is used to detect and locate loose-parts within the reactor coolant system, and to estimate their mass and damage potential. There are several methods to estimate mass, such as the center frequency method based on the Hertz's impact theory, a frequency ratio method and so on, but it is known that these methods cannot provide accurate information on impact response for identifying the impact source. Thanks to increasing computing power, finite element analysis (FEA) method recently become an available option to calculate reliably impact response behavior. In this paper, a finite element analysis model to simulate the propagation behavior of the bending wave, generated by a metal ball impact, is validated by performing a series of impact tests and the corresponding finite element analyses for flat plate and shell structures. Also, a FEA-based metal sphere signal map is developed, and then blind tests are performed to verify the map. This study provides an accurate simulation method for predicting the metal impact behavior and for building a metal sphere signal map, which can be used to estimate the mass of loose-parts on site in nuclear power plants.

Commercial Production of Seed Garlic by Tissue Culture Technique (조직배양에 의한 씨마늘의 상업적 생산)

  • NAM Sang-Il;PARK Ju-Hyun;CHOI Jong-In;KWON Ki-Seok;UHM Jeong-Sik
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.33-40
    • /
    • 2002
  • We, Tong Yang Moolsan Co. Ltd. (TYM) set up the mass-production system for virus-free seed garlic via tissue culture technique. TYM's tissue culture technique is called as 'Multiple shoot propagation technique'. This technique can lead mass propagation of genetically homogeneous seed garlic in a short period because of its highly proliferation rate of in vitro shoots ($15^{10}$ /year). TYM researchers applied the technique to some selected garlic cultivars with superior characteristics and carried out field test of productivity in the inside and outside of the country for several years. According to the yearly results of field test with virus-free seed garlic, we ascertained that virus-free seed garlic can produce the highly yield increase (max. above $50\%$) and also can enhance the product quality. Consequently, we estimated that TYM's seed garlic will contribute to farmers with increase of income and can elevate the national position of garlic market in the world for its competitive power of technical and production cost.

  • PDF

Model-based localization and mass-estimation methodology of metallic loose parts

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Munsung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.846-855
    • /
    • 2020
  • A loose part monitoring system is used to detect unexpected loose parts in a reactor coolant system in a nuclear power plant. It is still necessary to develop a new methodology for the localization and mass estimation of loose parts owing to the high estimation error of conventional methods. In addition, model-based diagnostics recently emphasized the importance of a model describing the behavior of a mechanical system or component. The purpose of this study is to propose a new localization and mass-estimation method based on finite element analysis (FEA) and optimization technique. First, an FEA model to simulate the propagation behavior of the bending wave generated by a metal sphere impact is validated by performing an impact test and a corresponding FEA and optimization for a downsized steam-generator structure. Second, a novel methodology based on FEA and optimization technique was proposed to estimate the impact location and mass of a loose part at the same time. The usefulness of the methodology was then validated through a series of FEAs and some blind tests. A new feature vector, the cross-correlation function, was also proposed to predict the impact location and mass of a loose part, and its usefulness was then validated. It is expected that the proposed methodology can be utilized in model-based diagnostics for the estimation of impact parameters such as the mass, velocity, and impact location of a loose part. In addition, the FEA-based model can be used to optimize the sensor position to improve the collected data quality in the site of nuclear power plants.

Establishment of efficient Alstromeria callus induction system using node culture and various hormones (마디배양과 다양한 호르몬을 이용한 효율적인 알스트로메리아 캘러스 유도 시스템 체계 확립)

  • Yang, Hwan Rae;Lee, Sang Hee;Kim, Jong Bo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.413-416
    • /
    • 2019
  • Alstroemeria (Alstroemeriaceae) is one of the most important cut flowers in international market. Especially, characteristics like long vase-life, various colors, tolerance to low temperature and a low energy requirement during cultivation have stimulated this success. Because of its characteristics such as low multiplication rates, time-consuming process and high risk of carrying viral disease, in vitro propagation techniques based on rhizome meristems culture have been developing nowadays. The callus induction has various cultivation sites compared with the direct plant generation method, and if the callus is maintained well, the plant differentiation can be performed simultaneously while maintaining the callus, so that it can be used for mass proliferation. In this study, we tested various hormones and cultivars for efficient callus induction. As a result of culturing between the nodes and the internodes, the callus began to be formed after 8 weeks, and the calli incidence in the nodes was higher than that between the internodes. Also, in the comparison of 2,4-D and picloram, the callus incidence rate was up to 2 times higher in the medium treated with 2,4-D. Using these results, it is thought that it will help establish the system of mass propagation system of Alstroemeria and cultivate new varieties.

An Efficient In vitro Propagation of Zanthoxylum piperitum DC.

  • Hwang, Sung-Jin;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.316-320
    • /
    • 2003
  • A protocol is described for rapid multiplication of Zanthoxylum piperitum DC. (Rutaceae), an important aromatic and medicinal plant, through shoot-tip explant cultures. Murashige and Skoog (MS) medium supplemented with various concentrations of N-6-benzyladenine (BA), N-6-benzylaminopurine (BAP) and thidiazuron (TDZ), in single or in combination with ${\alpha}-naphthaleneacetic$ acid (NAA), was used to determine the rate of shoot proliferation. N-6-benzyladenine (BA) used at 0.5mg/l, was the most effective in initiating multiple shoot proliferation at the rate of 23 microshoots per shoot-tip explants after 40 days of culture. Shoot multiplication increased 1.2-fold in each successive subculture. Induction of rooting (98%) was achieved by transferring the shoots to the same basal medium containing 2 mg/l indole-3-butyric acid (IBA). Plantlets went through a hardening phase in a controlled growth chamber, prior to in vivo transfer. These results represented that possible application for the mass production of plantlets through in vitro culture system of Zanthoxylum piperitum DC.

Fundamental and plane wave solution in non-local bio-thermoelasticity diffusion theory

  • Kumar, Rajneesh;Ghangas, Suniti;Vashishth, Anil K.
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.21-38
    • /
    • 2021
  • This work is an attempt to design a dynamic model for a non local bio-thermoelastic medium with diffusion. The system of governing equations are formulated in terms of displacement vector field, chemical potential and the tissue temperature in the context of non local dual phase lag (NL DPL) theories of heat conduction and mass diffusion. Based on this considered model, we study the fundamental solution and propagation of plane harmonic waves in tissues. In order to analyze the behavior of the NL DPL model, we construct basic theorem in the terms of elementary function which determine the existence of three longitudinal and one transverse wave. The effects of various parameters on the characteristics of waves i.e., phase velocity and attenuation coefficients are elaborated by plotting various figures of physical quantities in the later part of the paper.

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

Effect of Growth Regulator and Sterilization Method on Multiple Shoot Induction through Sucker and Stem Node Culture in Ramie(Boehmeria nivea Hoooker et Arnot) (모시풀 조직배양에서 소독방법 및 생장조절제의 Multiple Shoot 유기 효과)

  • 박홍재;문윤호;오용비
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.704-709
    • /
    • 1996
  • This experiment was carried out to establish the system of mass propagation through tissue culture using sucker and stem in Ramie. The sterilization for tissue culture of Ramie was the better treatment of 2% NaClO for 20 minute into ultrasonic cleaner than the others, and so rate of contamination was 3.3%, and it was able to produce 96% healthy plant. The effect of growth regulator was superior to mixed treatment of 0.02mg/$\ell$ NAA, 1.5mg/$\ell$ BA, 0.lmgmg/$\ell$ GA$_3$, which it was not formed callus and but produced 96% healthy plant. The effect of propagation was higher in culturing of the stem node than the sucker in cultural part, local variety than improved ones. The effect of acclimatization was superior to pretreatment of 30 minute after soaking in 100ppm NAA, transplanting on bed soil which mixed to ratio of vermiculite : soil : sand =1 : 2 : 1, the transplanted plants were grown all normal.

  • PDF

Three-dimensional MHD modeling of a CME propagating through a solar wind

  • An, Jun-Mo;Inoue, Satoshi;Magara, Tetsuya;Lee, Hwanhee;Kang, Jihye;Kim, Kap-Sung;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.70.2-70.2
    • /
    • 2014
  • We developed a three-dimensional (3D) magnetohydrodynamic (MHD) simulation code to reproduce the structure of a solar wind and the propagation of a coronal mass ejection (CME) through it. This code is constructed by a finite volume method based on a total variation diminishing (TVD) scheme using an unstructured grid system (Tanaka 1994). The grid system can avoid the singularity arising in the spherical coordinate system. In this study, we made an improvement of the code focused on the propagation of a CME through a solar wind, which extends a previous work done by Nakamizo et al. (2009). We first reconstructed a solar wind in a steady state from physical values obtained at 50 solar radii away from the Sun via an MHD tomography applied to interplanetary scintillation (IPS) data (Hayashi et al. 2003). We selected CR2057 and inserted a spheromak-type CME (Kataoka et al. 2009) into a reconstructed solar wind. As a result, we found that our simulation well captures the velocity, temperature and density profiles of an observed solar wind. Furthermore, we successfully reproduce the general characteristics of an interplanetary coronal mass ejection (ICME) obtained by the Helios 1/2 spacecraft (R. J. FORSYTH et al. 2006).

  • PDF