• 제목/요약/키워드: martingale difference sequences

검색결과 6건 처리시간 0.019초

ON THE WEAK LAWS WITH RANDOM INDICES FOR PARTIAL SUMS FOR ARRAYS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES

  • Sung, Soo-Hak;Hu, Tien-Chung;Volodin, Andrei I.
    • 대한수학회보
    • /
    • 제43권3호
    • /
    • pp.543-549
    • /
    • 2006
  • Sung et al. [13] obtained a WLLN (weak law of large numbers) for the array $\{X_{{ni},\;u_n{\leq}i{\leq}v_n,\;n{\leq}1\}$ of random variables under a Cesaro type condition, where $\{u_n{\geq}-{\infty},\;n{\geq}1\}$ and $\{v_n{\leq}+{\infty},\;n{\geq}1\}$ large two sequences of integers. In this paper, we extend the result of Sung et al. [13] to a martingale type p Banach space.

ON THE WEAK LAW FOR RANDOMLY INDEXED PARTIAL SUMS FOR ARRAYS

  • Hong, Dug-Hun;Sung, Soo-Hak;Andrei I.Volodin
    • 대한수학회논문집
    • /
    • 제16권2호
    • /
    • pp.291-296
    • /
    • 2001
  • For randomly indexed sums of the form (Equation. See Full-text), where {X(sub)ni, i$\geq$1, n$\geq$1} are random variables, {N(sub)n, n$\geq$1} are suitable conditional expectations and {b(sub)n, n$\geq$1} are positive constants, we establish a general weak law of large numbers. Our result improves that of Hong [3].

  • PDF

ON THE WEAK LAW FOR WEIGHTED SUMS INDEXED BY RANDOM VARIABLES UNDER NEGATIVELY ASSOCIATED ARRAYS

  • Baek, Jong-Il;Lee, Dong-Myong
    • 대한수학회논문집
    • /
    • 제18권1호
    • /
    • pp.117-126
    • /
    • 2003
  • Let {$X_{nk}$\mid$1\;{\leq}\;k\;{\leq}\;n,\;n\;{\geq}\;1$} be an array of row negatively associated (NA) random variables which satisfy $P($\mid$X_{nk}$\mid$\;>\;x)\;{\leq}\;P($\mid$X$\mid$\;>\;x)$. For weighed sums ${{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}$ indexed by random variables {$T_n$\mid$n\;{\geq}$1$}, we establish a general weak law of large numbers (WLLN) of the form $({{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}\;-\;v_{[nk]})\;/b_{[an]}$ under some suitable conditions, where $\{a_n$\mid$n\;\geq\;1\},\; \{b_n$\mid$n\;\geq\;1\}$ are sequences of constants with $a_n\;>\;0,\;0\;<\;b_n\;\rightarrow \;\infty,\;n\;{\geq}\;1$, and {$v_{an}$\mid$n\;{\geq}\;1$} is an array of random variables, and the symbol [x] denotes the greatest integer in x.