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1. Introduction

Let {Z;,t = 0,41,42,--- |} be a sequence of m-dimensional random vectors.
We say that {Z:} is an m-dimensional martingale difference sequence if
E(Zt[]‘-t_l) =0a.s. (11)

where F; is the o-field generated by Z,,u < t. Let W™ denote Wiener measure

on C™(0,1], the space of all continuous functions f defined on [0,1] into R™

equipped with norms ||fllec = ,max  sup |fi(t)] and let I'; denote the condi-
Sism<i<]

tional covariance matrix of Z;, E(ZtZ;Ift_l) =T} a.s., such that
1 n
-3, -"T, (1.2)
n t=1
where the prime denotes transpose and I' is a positive definite(d.f.) nonrandom
n
matrix. Further, let S, = ZZt,(n > 0)(S, = 0), and define for n > 1 the
t=1
stochastic process &, by

En(u)=n_%1"_%[§r+(nu—r)Zr+1],r§nu<r+1, (1.3)

Received June 28, 2007.

© 2007 Korean SIGCAM and KSCAM .
417



418 Kwnag Hee Han

where r = 0,1,---,(n —1).

For m = 1, under certain conditions, Babu and Ghosh (1976) and Rootzen
(1976) show that the process &, defined by (1.3) converges weakly (or in dis-
tribution) to W', Wiener measure on C[0,1]. We will extend their results on
functional central limit theorems to the case of m-dimensional Z; under slightly
weaker conditions. More general results, however, are obtainable. As it will
appear in Theorem 3.1 below, the weak convergence of &, to W™ is mixing in
the sense of Renyi(see Definition 2.1). Furthermore, the convergence holds if the
process £, is randomly indexed.

There are, of course, many ways of defining the functional central limit the-
orem, because there are alternative ways of norming or scaling the partial sum
process &, (see e.g., Hall and Heyde, 1980, p.98). We will have more to say on
this point in Remark following the proof of Corollary 3.2.

In this paper we will also construct a consistent estimator for the limiting
covariance matrix I', under the assumption that the m-dimensional sequence
{Z.} is weakly stationary. Using this estimator we will be able to normalize or
scale the partial sum process {£,} based on the observed data and obtain the
same limiting distribution W™(see Corollary 3.2 stated below).

Let us now consider a consistent estimate of I'. First observe that if {Z;} is
weakly stationary, then

o)+2[ (h) + T(h ] (1.4)

where T'(h) = E(Z14Z,;) is the covariance matrix of {Z;} at lag h and

nE (Zninl) = Z (1 - |—Z|) F(h) - T as n — oo, (1.5)

lhl<n

_ 1<
where Zn = - Z Zs. Let {hn} be a sequence of positive integers such that

hn—>ooand%%-—)Oasn—»ooforall<$>0. (1.6)

A typical example of such sequence is h, = [(logn)?], for some ¢ < 0o. From
(1.4), it is clear that I" involves an infinite number of unknown parameters.
In view of (1.4), given n consecutive observations Z,,-- ,Z,, we propose to

estimate I" by
hn

P = Ea(0) + Y [Bulh) + T5(0)], an
h=1
where

Ta( Z(ZH,, — T )2y —T) , 0K h < . (1.8)
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Our motivation, behind the estimator 'y, is that covariances at large lags, rel-
ative to the number of data points, are likely to be negligible compared with
those at smaller lags.

2. Preliminary results

First we recall the definition of mixing in the sense of Renyi(1958).

Definition 2.1. A sequence {Y,,n > 1} of random elements on the probability
space (Q, F, P) with values in a metric space is Refiyi-mizring with limiting distri-
bution F(notation Y,, = F(mixing)) if P({Y, € A}NB) —» F(A)P(B), asn —
0o, for all F-continuity sets A and all events B with P(B) > 0.

Lemma 2.2. Let {Y,,n > 1} and {Y,,n > 1} be two sequences of random
elements on the probability space (Q, F, P) with values in a metric space (T, p).
If Y, = F(mizing) and p(Y,Y,) —P 0 as n — o, then Y, = F (mizing).

This is also Lemma 2.6 of Rootsen(1976) and its proof is immediate.

Lemma 2.3. Let {Yp,n > 1} and {Y,;,n > 1} be two sequences of random
elements with values in a metric space. Further, let g(z,y) be a continuous
function of two variables. If Y, = F(miring) and Y,; —P Y asmn — oo, then
9(Y,Y,) = g(F,Y" ) (mizing).

Proof. See Theorem 1’ of Aldous of Eagleson(1978). O
Lemma 2.4. Let {Z;,t > 1} be an m-dimensional martingale difference with

EZ, = 0 and let {£.} be as in (1.3) and assume that (1.2) and
sup E[|Z:]|*> < 0o (2.1)
t

hold. Define
0, un <pn,
f"apn (u) = 1
n—EI“%(S, —Spa)s Pn<r<un<u+l.
Suppose that py, is a sequence of positive integers such that
Pn — 00 and pp/n — 0 as n — oo. (2.2)

Then we have
sup [|én(w) — &n,pn (u)]| = 0p(1). (2.3)
0<u<1
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Proof. Note that by Doob’s maximal inequality
2

< K sup E|Z,)? (2.4)
t

k

2 L

n~! max
1<k<n

for some constant K. To prove this lemma, let us first observe that

sup [|€n(w) = €npn (w)|| < 307 F||T| 7% max [ISi] (2.5)
0<u<l1 1<i<pn

+n~H||T)| "% max |1Zi).

1<i<n
By (2.1), (2.2) and (2.4)
w7t max Sil° = Op(pa/m) = 0s(1) (26)
and by assumption (2.1)
-1
n”% max |Zi| = 05(1). (2.7)

Combining (2.6) and (2.7) shows that the right-hand side of (2.5) converges in
probability to zero and hence the proof is complete.

The following lemmas are useful in the sequel.

Lemma 2.5. Let {Y;,i > 1} be a sequence of random variables, and let S, =
i+ +Ye, San=Yar1+ -+ Yopn, Map = max |Sa,i|- Suppose that for
<i<n

somev>2,alln>1andalla>0
E|S; )" < AV, (2.8)

E\M, .|" < B,n*/?, (2.9)

where A, and B, are positive constants depending only on v. Then for any
r € (0,v) and for alln > 1,

E (sup |Sk/ki) < cr,un-r/z’
k>n
where
Cry = [1 + T/{—r(A” +B,)27v(1-2"%8)71.
Proof. By (2.8) and (2.9) and Theorem 5.1 of Serfling(1970) for any z > 0,

P (sup |Sk/k| > x) <ayr7'n" %, (2.10)
k>n
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where a, = (4, + B,)27"(1 — 27%)~1, Note that
E (sup ISk/k]> e+ E [sup |Sk/k|" - I(sup |Sk/k|" > e)]
k>n k>n k2>n
=
€ +/ P (sup |Sk/k|" > x) dzx
€ an

€ +/ ry™1p (21>1p |Sk/k| > y) dy

IA

IA

i

1/r

o0
< e+raun‘%/ y 1y
61/1‘

elr—v)fr
v—-r )’
where the last inequality follows from (2.10). Letling € = n we obtain the
desired inequality. O

(S

= e+ra,n

—r/2

Lemma 2.6. Let {Y;,t > 1} be a sequence of martingale differences such that
sup E|Y;|” < oo for some r > 2, and let {c;} be a sequence of real numbers.
t

Then there exists a constant B, such that

n r n rf2

thYt < B, (supE]Yilr) (Z cf) :
t t=1

t=1
Proof. The proof follows easily by an application of Burkholder’s inequality and
then Minkowski’s inequality. 0

E

Lemma 2.7. Let {Y;,t > 1} be a sequence of martingale differences such that
sup E|Y;|” < oo for some v > 2. Then for any r € (0,v) and for alin > 1,
t

E (sup |Sk/k|) < Dr,u ' n—-r/2’
k>n

where

Dy, = {1 +(v-r)lre, [1 + ( v IH 9=v(1—9=v/2)-1 <sng|Yt|") } ,

v —

e = (1801/2)", v 457l =1,

Proof. By Doob’s maximal inequality and Lemma. 2.6 we have that, foralla > 0
and all n > 1,

E\M, " <W/(v—=1))E|Sanl” <c(v/(v—1))" (Sl:p E|Yt|") /2.
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Application of Lemma 2.5 with 4, = c,,(supE|Yt|") and B, = ¢, (v/(v —
t

1))"( sup E|Y3)” ) now completes the proof. O
¢

3. Main results

Theorem 3.1, Let {Z,t > 1} be an m-dimensional martingale difference se-
quence and {£,} be as in (1.8) and assume that (1.2) and (2.1) hold. Further,

assume that

% ZE(Z;ZtI(Z;Zt > ne)|.7-'t_1) —P 0 as n — 00, (3.1)
t=1

for every € > 0, where I(-) denotes the indicator function. Let {Nn,n > 1} be
a sequence of positive integer valued random variables defined on the probability
space (2, F, P) such that, as n — 0o, N,/n —P N with P(0 < N < o0) = 1.
Then, the following hold:

(i) & = Wm(mizing),
(ii) En, = W™,

Proof. It follows from the multivariate version of Theorem 1 of Babu and Ghosh(197¢
or Theorem 2.4 of Rootzen (1976) or Thorem 2 of Aldous and Eagleson{1978)
that &, = W™(mizing). So, Theorem 3.1 (i) is proved.

To prove Theorem 3.1 (ii), first note that &, p,, = W™ (mizing), which follows
directly from application of Theorem 3.1 (i), Lemmas 2.4 and 2.2. Combining
this result and Lemma 2.4, we arrive at (17.19) of Billingsley(1968, p147). From
this point, the proof of Theorem 3.1 (ii) follows the same lines as that given in
his Theorem 17.2 and hence the details are omitted. O

Corollary 3.2. Let {f:l} be a sequence of m x m p.d. matrices such that n—
T, a.s.asn— o0, let & be the same as &, defined in (1.8), with T replaced by
T',.. Then, under the assumptions in Theorem 3.1, we have

(i) bn = W™ (mizing),
(i) En, = W™

Proof. (i) follows immediately from a joint application of Theorem 3.1 (i) and
Lemma 2.3. Because 'y — I' a.s. and N, —P 00, as n — 0,it follows that
T'n, —P T (cf, Gut, 1988 Theorem 2.2). Hence part (i) follows from this fact,
Theorem 3.1 (ii) and Lemma 2.3. O

Remark. As mentioned in the introduction, there are various ways of defining
the partial sum process. Corollary 3.2 shows that we may normalize the process
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by any sequence which converges a.s. to I'. In the univariate case, due to the
nonhomogeneous nature of the variances, Brown(1971) used

-1 A e 2 2 _ 2
fn(u) =5, | S+ m r+1 if s, <us; < Sri1
r r

where s2 = ES?. A similar partial sum process can also be defined in our case.
For instance, let

1 % Sau— 5 e 2 2 _ 2
{n(u) =n"20, Sr + ;E:;—_SiZT-H lf S, < us, < Srt1s (Rl)
r r

2

where s2 = E and replace the constant n in (1.2) and (3.1) by s2.

n
D T
t=1 . .
Note that since I is p.d. and I';, — I a.s., we may assume that I, is also p.d.

An alternative choice of particular interest for the partial sum process is

En(u) =T 725, 82 <us? < 82, (R.2)

This process belongs to D™[0, 1], the space of all functions on [0,1] into R™ which
are right continuous and have left-hand limits and usually equipped with the
Skorohod topology and a compatible metric(see, e.g., Billingsley, 1968; Pollard,
1984).

For simplicity and clarity of the exposition, we have chosen the partial sum
process &, introduced in (1.3). However, it is easy to see that the conclusions
of Theorem 3.1 also hold for the partial sum processes given in (R.1) and (R.2)
above with suitable modifications.

The next theorem gives us information concerning the rate of convergence
of I',, to I, which, in turn, implies that I'y; — I" a.s.. Thus, I, satisfies the
condition of Corollary 3.2.

Theorem 3.3. Let 73; and 7;; denote the (i, 7)-th elements of I andT Tespec-
tively. Assume that the m-dimensional martingale difference sequence {Z:} is
weakly stationary with sup; E||Z:||*" < oo for some r > 2. Then

P | J— -1/2
lsntl,?%(m “TW T‘LJ “r O('n hn) N (32)

where ||.||» denotes the r-th norm in the space L™(Q, F, P), and

I — T a.s. as n— o0. (3.3)

Proof. Denote the components of Z¢ and 2 by Z;; and Z:;j, j=1,--,m,and
the (i, j)-th entries of I'(h) and I'(h) by ri;(h) and r3;(h). Clearly,

sup E|Z;|*" < oo (3.4)
¢
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and by Minkowski’s inequality and Lemma 2.7

Y Zy| =0(m?). (3.5)
t=1 2r
Let
rij(h) =n IZ Zi+hiZs), (3.6)
t=1
Ay = Ai(nyi,gh)=-n"" Z (Zs4niZi;)
t=n—h+1
n—h n—h
Ay = A(nyiy g h)=-n"! (Zm N Zii+ Zns Y Zt+hi>
t=1 =1
As = As(n,i,j,h) = -n"(n — h)ZniZn;.
Then, in view of (1.8), we have
rij(h) =15 (h) + A1 + A2 + As. (3.7)

Using the Schwarz inequalities (3. 4) and (3.5), it follows immediately that

Z I Akl = O(n~/2). (3.8)

max
1<z]<m1<h.<h.

Note that from (1.4) and (1.7),

hn
T —T; = 13(0) —7ri;(0) + Z [(rij(h) — i (R)) + (r5:(h) — r,-i(h))]
h=1
= D (W) +r(h)
h=hn+1
Hence (3.2) holds if
1<0g%m 1<h 12hEhn ax ||vnrij(h) — rij(R)]- = O(1). (3.9)
and by virtue of (3.7) and (3.8) it suffices to show that
(Jnax | max Va5 () - rii (W)l = O(1). (3.10)

By (1.4) and (3.6) we have

vn(rij(h) —rij(h)) = Vn (n_l Y (ZerniZi) — E(Zt+m'th)>

t=1

= n_% Z{ZHMZU- - E(Zt+h,-th)}. (3.11)
t=1
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Further more,

sup 0% Y {ZesniZy; — B(ZerniZej)}|| = 0Q1) (3.12)

2 t=1 r

where (3.12) can be obtained from the Marcinkiewicz-Zygmund inequality(cf.
Chow and Teicher(1978)). Now, from (3.11), (3.12) and Lemma 2.6 we see that

s sup V(s ()~ s (W) = O(D),

which proves (3.10). Now by using (3.2) and Markov inequality we obtain
max_ P(|75;(h) — 7i;(h)] > €) = O(n™ A7),

1<4,j<m

which implies (3.3). This completes the proof of Theorem 3.3.
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