• Title/Summary/Keyword: martingale difference array

Search Result 6, Processing Time 0.015 seconds

THE UNIFORM CLT FOR MARTINGALE DIFFERENCE ARRAYS UNDER THE UNIFORMLY INTEGRABLE ENTROPY

  • Bae, Jong-Sig;Jun, Doo-Bae;Levental, Shlomo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.39-51
    • /
    • 2010
  • In this paper we consider the uniform central limit theorem for a martingale-difference array of a function-indexed stochastic process under the uniformly integrable entropy condition. We prove a maximal inequality for martingale-difference arrays of process indexed by a class of measurable functions by a method as Ziegler [19] did for triangular arrays of row wise independent process. The main tools are the Freedman inequality for the martingale-difference and a sub-Gaussian inequality based on the restricted chaining. The results of present paper generalizes those of Ziegler [19] and other results of independent problems. The results also generalizes those of Bae and Choi [3] to martingale-difference array of a function-indexed stochastic process. Finally, an application to classes of functions changing with n is given.

THE SECOND CENTRAL LIMIT THEOREM FOR MARTINGALE DIFFERENCE ARRAYS

  • Bae, Jongsig;Jun, Doobae;Levental, Shlomo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.317-328
    • /
    • 2014
  • In Bae et al. [2], we have considered the uniform CLT for the martingale difference arrays under the uniformly integrable entropy. In this paper, we prove the same problem under the bracketing entropy condition. The proofs are based on Freedman inequality combined with a chaining argument that utilizes majorizing measures. The results of present paper generalize those for a sequence of stationary martingale differences. The results also generalize independent problems.

ON THE WEAK LAWS WITH RANDOM INDICES FOR PARTIAL SUMS FOR ARRAYS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES

  • Sung, Soo-Hak;Hu, Tien-Chung;Volodin, Andrei I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.543-549
    • /
    • 2006
  • Sung et al. [13] obtained a WLLN (weak law of large numbers) for the array $\{X_{{ni},\;u_n{\leq}i{\leq}v_n,\;n{\leq}1\}$ of random variables under a Cesaro type condition, where $\{u_n{\geq}-{\infty},\;n{\geq}1\}$ and $\{v_n{\leq}+{\infty},\;n{\geq}1\}$ large two sequences of integers. In this paper, we extend the result of Sung et al. [13] to a martingale type p Banach space.

ON THE WEAK LAW FOR WEIGHTED SUMS INDEXED BY RANDOM VARIABLES UNDER NEGATIVELY ASSOCIATED ARRAYS

  • Baek, Jong-Il;Lee, Dong-Myong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.117-126
    • /
    • 2003
  • Let {$X_{nk}$\mid$1\;{\leq}\;k\;{\leq}\;n,\;n\;{\geq}\;1$} be an array of row negatively associated (NA) random variables which satisfy $P($\mid$X_{nk}$\mid$\;>\;x)\;{\leq}\;P($\mid$X$\mid$\;>\;x)$. For weighed sums ${{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}$ indexed by random variables {$T_n$\mid$n\;{\geq}$1$}, we establish a general weak law of large numbers (WLLN) of the form $({{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}\;-\;v_{[nk]})\;/b_{[an]}$ under some suitable conditions, where $\{a_n$\mid$n\;\geq\;1\},\; \{b_n$\mid$n\;\geq\;1\}$ are sequences of constants with $a_n\;>\;0,\;0\;<\;b_n\;\rightarrow \;\infty,\;n\;{\geq}\;1$, and {$v_{an}$\mid$n\;{\geq}\;1$} is an array of random variables, and the symbol [x] denotes the greatest integer in x.