DOI QR코드

DOI QR Code

WEAK LAWS OF LARGE NUMBERS FOR ARRAYS UNDER A CONDITION OF UNIFORM INTEGRABILITY

  • Sung, Soo-Hak (Department of Applied Mathematics Pai Chai University) ;
  • Lisawadi, Supranee (Department of Mathematics and Statisitcs University of Regina) ;
  • Volodin, Andrei (Department of Mathematics and Statisitcs University of Regina)
  • Published : 2008.01.31

Abstract

For an array of dependent random variables satisfying a new notion of uniform integrability, weak laws of large numbers are obtained. Our results extend and sharpen the known results in the literature.

Keywords

References

  1. T. K. Chandra, Uniform integrability in the Cesaro sense and the weak law of large numbers, Sankhya Ser. A 51 (1989), no. 3, 309-317
  2. T. K. Chandra and A. Goswami, Cesaro ${\alpha}$-integrability and laws of large numbers I, J. Theoret. Probab. 16 (2003), no. 3, 655-669 https://doi.org/10.1023/A:1025620532404
  3. N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 119-122 https://doi.org/10.1007/BF01013465
  4. A. Gut, The weak law of large numbers for arrays, Statist. Probab. Lett. 14 (1992), no. 1, 49-52 https://doi.org/10.1016/0167-7152(92)90209-N
  5. D. H. Hong and K. S. Oh, On the weak law of large numbers for arrays, Statist. Probab. Lett. 22 (1995), no. 1, 55-57 https://doi.org/10.1016/0167-7152(94)00047-C
  6. K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295 https://doi.org/10.1214/aos/1176346079
  7. V. Kruglov, Growth of sums of pairwise-independent random variables with infinite means, Teor. Veroyatn. Primen. 51 (2006), no. 2, 382-385 https://doi.org/10.4213/tvp60
  8. D. Landers and L. Rogge, Laws of large numbers for pairwise independent uniformly integrable random variables, Math. Nachr. 130 (1987), 189-192 https://doi.org/10.1002/mana.19871300117
  9. D. Li, A. Rosalsky, and A. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305
  10. M. Ordonez Cabrera, Convergence of weighted sums of random variables and uniform integrability concerning the weights, Collect. Math. 45 (1994), no. 2, 121-132
  11. M. Ordonez Cabrera and A. Volodin, Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability, J. Math. Anal. Appl. 305 (2005), no. 2, 644-658 https://doi.org/10.1016/j.jmaa.2004.12.025
  12. Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), no. 2, 343-356 https://doi.org/10.1023/A:1007849609234
  13. S. H. Sung, Weak law of large numbers for arrays of random variables, Statist. Probab. Lett. 42 (1999), no. 3, 293-298 https://doi.org/10.1016/S0167-7152(98)00219-3
  14. S. H. Sung, T. C. Hu, and A. Volodin, On the weak laws for arrays of random variables, Statist. Probab. Lett. 72 (2005), no. 4, 291-298 https://doi.org/10.1016/j.spl.2004.12.019

Cited by

  1. Some Limit Theorems for Arrays of Rowwise Pairwise Negatively Quadratic Dependent Random Variables vol.59, pp.2, 2015, https://doi.org/10.1137/S0040585X97T987144
  2. Some limit theorems for arrays of rowwise pairwise NQD random variables vol.59, pp.2, 2014, https://doi.org/10.4213/tvp4573
  3. A STRONG LIMIT THEOREM FOR SEQUENCES OF BLOCKWISE AND PAIRWISE m-DEPENDENT RANDOM VARIABLES vol.48, pp.2, 2011, https://doi.org/10.4134/BKMS.2011.48.2.343
  4. L1-Convergence for Weighted Sums of Some Dependent Random Variables vol.28, pp.6, 2010, https://doi.org/10.1080/07362994.2010.513671
  5. Strong convergence for weighted sums of arrays of rowwise pairwise NQD random variables vol.65, pp.1, 2014, https://doi.org/10.1007/s13348-013-0087-2
  6. Moment inequalities for $m$-NOD random variables and their applications vol.62, pp.3, 2017, https://doi.org/10.4213/tvp5123
  7. On convergence for sequences of pairwise negatively quadrant dependent random variables vol.59, pp.4, 2014, https://doi.org/10.1007/s10492-014-0067-1
  8. Weak laws of large numbers for arrays of dependent random variables vol.86, pp.5, 2014, https://doi.org/10.1080/17442508.2013.879140
  9. WLLN for arrays of nonnegative random variables vol.122, 2017, https://doi.org/10.1016/j.spl.2016.10.030
  10. Strong laws of large numbers and mean convergence theorems for randomly weighted sums of arrays under a condition of integrability vol.9, pp.5, 2012, https://doi.org/10.1016/j.stamet.2012.02.003
  11. Conditional mean convergence theorems of conditionally dependent random variables under conditions of integrability vol.10, pp.3, 2015, https://doi.org/10.1007/s11464-015-0450-6
  12. Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables vol.377, pp.2, 2011, https://doi.org/10.1016/j.jmaa.2010.11.042
  13. Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications 2017, https://doi.org/10.1007/s00184-017-0618-z
  14. Convergence in r-mean of weighted sums of NQD random variables vol.26, pp.1, 2013, https://doi.org/10.1016/j.aml.2011.12.030
  15. Some mean convergence and complete convergence theorems for sequences of m-linearly negative quadrant dependent random variables vol.58, pp.5, 2013, https://doi.org/10.1007/s10492-013-0030-6
  16. Limiting behaviour for arrays of row-wise END random variables under conditions ofh-integrability vol.87, pp.3, 2015, https://doi.org/10.1080/17442508.2014.959951
  17. Complete moment convergence of weighted sums for arrays of negatively dependent random variables and its applications vol.45, pp.11, 2016, https://doi.org/10.1080/03610926.2014.901365
  18. CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES vol.49, pp.6, 2012, https://doi.org/10.4134/JKMS.2012.49.6.1097
  19. Convergence of weighted sums for sequences of pairwise NQD random variables vol.45, pp.20, 2016, https://doi.org/10.1080/03610926.2014.953695
  20. Mean convergence theorems for weighted sums of random variables under a condition of weighted integrability vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-558
  21. Moment Inequalities for $m$-NOD Random Variables and Their Applications vol.62, pp.3, 2018, https://doi.org/10.1137/S0040585X97T988745
  22. -integrability and its applications pp.1744-2516, 2019, https://doi.org/10.1080/17442508.2018.1563605