• 제목/요약/키워드: markov model

검색결과 1,636건 처리시간 0.026초

The Method for Face Recognition using Wavelet Coefficients and Hidden Markov Model (웨이블렛 계수와 Hidden Markov Model를 이용한 얼굴인식 기법)

  • 이경아;이대종;박장환;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.162-165
    • /
    • 2003
  • 본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM)이용한 얼굴인식 알고리즘을 제안한다. 입력 영상은 이산웨이블렛을 기반으로 한 다해상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.

  • PDF

Statistical Inference of Some Semi-Markov Reliability Models

  • Alwasel, I.A.
    • International Journal of Reliability and Applications
    • /
    • 제9권2호
    • /
    • pp.167-182
    • /
    • 2008
  • The objective of this paper is to discuss the stochastic analysis and the statistical inference of a three-states semi-Markov reliability model. Using the maximum likelihood procedure, the parameters included in this model are estimated. Based on the assumption that the lifetime and repair time of the system are gener-alized Weibull random variables, the reliability function of this system is obtained. Then, the distribution of the first passage time of this system is derived. Many important special cases are discussed. Finally, the obtained results are compared with those available in the literature.

  • PDF

Estimation of Parameters in a Generalized Exponential Semi-Markov Reliability Models

  • El-Gohary Awad
    • International Journal of Reliability and Applications
    • /
    • 제6권1호
    • /
    • pp.13-29
    • /
    • 2005
  • This paper deals with the stochastic analysis of a three-states semi-Markov reliability model. Using both the maximum likelihood and Bayes procedures, the parameters included in this model are estimated. Next, assuming that the lifetime and repair time are generalized exponential random variables, the reliability function of this system is obtained. Then, the distribution of the first passage time of this system is discussed. Finally, some of the obtained results are compared with those available in the literature.

  • PDF

On-Line Character Recognition using Hidden Markov Model and Genetic Algorithm (Hidden Markov Model 과 Genetic Algorithm을 이용한 온라인 문자인식에 관한 연구)

  • 홍영표;장춘서
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.29-32
    • /
    • 2000
  • HMM(Hidden Markov Model)은 시간적인 정보를 토대로 하는 수학적인 방법으로서 문자인식에 많이 사용되어지고 있다. 그런데 HMM이 적용되고자 하는 문제에서 사용되어지는 상태 수와 HMM에서 사용되어지는 parameter들은 처음에 결정되는 값들에 의해서 상당히 많은 영향을 받게 된다. 따라서 한글의 특성을 이용한 HMM의 상태 수를 결정한 후 결정되어진 각각의 HMM parameter들을 Genetic Algorithm을 이용하였다. Genetic Algorithm은 매개변수 최적화 문제에 대하여 자연의 진화 원리를 마땅한 알고리즘으로 선택, 교배, 돌연변이 연산을 이용하여 최적의 개체를 구하게 된다. 여기서는 HMM에서의 Viterbi Algorithm을 적합도 검사에 사용하였다.

  • PDF

Multiple State Hidden Markov Model to Predict Transmembrane Protein Topology

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.1019-1031
    • /
    • 2004
  • This paper describes a new modeling method for the prediction of transmembrane protein topology. The structural regions of the transmembrane protein have been modeled by means of a multiple state hidden Markov model that has provided for the detailed modeling of the heterogeneous amino acid distributions of each structural region. Grammatical constraints have been incorporated to the prediction method in order to capture the biological order of membrane protein topology. The proposed method correctly predicted 76% of all membrane spanning regions and 92% sidedness of the integration when all membrane spanning regions were found correctly.

  • PDF

Gaussian Model Optimization using Configuration Thread Control In CHMM Vocabulary Recognition (CHMM 어휘 인식에서 형상 형성 제어를 이용한 가우시안 모델 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • 제10권7호
    • /
    • pp.167-172
    • /
    • 2012
  • In vocabulary recognition using HMM(Hidden Markov Model) by model for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate has the disadvantage that require sophisticated smoothing process. Gaussian mixtures in order to improve them with a continuous probability density CHMM (Continuous Hidden Markov Model) model is proposed for the optimization of the library system. In this paper is system configuration thread control in recognition Gaussian mixtures model provides a model to optimize of the CHMM vocabulary recognition. The result of applying the proposed system, the recognition rate of 98.1% in vocabulary recognition, respectively.

The Realization of Artificial Life to Adapt The Environment by Using The Markov Model

  • Kim, Do-Wan;Park, Wong-Hun;Chung, Jin-Wook;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.513-516
    • /
    • 2003
  • In this paper, we designed a Artificial Life(AL) that acts the appropriate actions according to the user's action, environments and AL's feeling. To realize this AL, we used the Markov Model. We consisted of the chromosome by Markov Model and obtained the appropriate actions by Genetic Algorithm.

  • PDF

An extension of Markov chain models for estimating transition probabilities (추이확률의 추정을 위한 확장된 Markov Chain 모형)

  • 강정혁
    • Korean Management Science Review
    • /
    • 제10권2호
    • /
    • pp.27-42
    • /
    • 1993
  • Markov chain models can be used to predict the state of the system in the future. We extend the existing Markov chain models in two ways. For the stationary model, we propose a procedure that obtains the transition probabilities by appling the empirical Bayes method, in which the parameters of the prior distribution in the Bayes estimator are obtained on the collaternal micro data. For non-stationary model, we suggest a procedure that obtains a time-varying transition probabilities as a function of the exogenous variables. To illustrate the effectiveness of our extended models, the models are applied to the macro and micro time-series data generated from actual survey. Our stationary model yields reliable parameter values of the prior distribution. And our non-stationary model can predict the variable transition probabilities effectively.

  • PDF

Agent-based Personalized TV Program Recommendation System (에이전트 기반의 개인화된 TV 프로그램 추천 시스템)

  • Hong Jong-Kyu;Park Won-Ik;Kim Ryong;Kim Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.214-216
    • /
    • 2005
  • 디지털 방송이 시작되면서 시청자가 선택할 수 있는 채널은 200여 개로 늘어났다. 지금처럼 리모컨으로 채널을 돌려가며 보거나 원하는 TV 프로그램을 찾기란 거의 불가능해진 것이다. 이러한 다채널 다매체 시대에 원하는 프로그램 시청을 도와줄 수 있는 프로그램 가이드 시스템의 필요성이 증가하게 되었고, 더 나아가 TV를 시청하는 각 개인의 선호도를 반영하는 것이 요구되었다. 본 논문에서는 r-order Markov Model을 이용한 개인화된 전자 TV 프로그램 추천 시스템을 제안한다. Markov Model은 시간이 지남에 따라 시청하는 프로그램의 변화를 모델링하기 위한 방법으로 사용하였다. 이 시스템은 시청자의 선호 프로그램을 예측하기 위해서 r-order Markov Model을 제안하는 것뿐만 아니라 TV 시청자의 프로그램 선호를 예측하기 위한 모델들을 적용하였다. 실험 결과는 Markov Model이 추천에 대한 높은 정확성을 제공할 수 있다는 것을 보여준다.

  • PDF

A Hidden Markov Model Imbedding Multiword Units for Part-of-Speech Tagging

  • Kim, Jae-Hoon;Jungyun Seo
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.7-13
    • /
    • 1997
  • Morphological Analysis of Korean has known to be a very complicated problem. Especially, the degree of part-of-speech(POS) ambiguity is much higher than English. Many researchers have tried to use a hidden Markov model(HMM) to solve the POS tagging problem and showed arround 95% correctness ratio. However, the lack of lexical information involves a hidden Markov model for POS tagging in lots of difficulties in improving the performance. To alleviate the burden, this paper proposes a method for combining multiword units, which are types of lexical information, into a hidden Markov model for POS tagging. This paper also proposes a method for extracting multiword units from POS tagged corpus. In this paper, a multiword unit is defined as a unit which consists of more than one word. We found that these multiword units are the major source of POS tagging errors. Our experiment shows that the error reduction rate of the proposed method is about 13%.

  • PDF