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Abstract. The objective of this paper is to discuss the stochastic analysis and
the statistical inference of a three-states semi-Markov reliability model. Using the
maximum likelihood procedure, the parameters included in this model are estimated.
Based on the assumption that the lifetime and repair time of the system are gener-
alized Weibull random variables, the reliability function of this system is obtained.
Then, the distribution of the first passage time of this system is derived. Many
important special cases are discussed. Finally, the obtained results are compared
with those available in the literature.
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1 INTRODUCION

Stochastic modeling is an important tool for reliability theory, probability mod-
els, social security policy analysis and many other different applications see for
example Medhi (1982), Korolyuk and Swishchuk (1994) and Janssen and Manca
(2002). There two types of random disturbances present. The first kind, termed
measurement noise, arises because of imprecise measurement instruments, inaccu-
rate recording systems and so on. The second kind can be termed system noise, in
which the system itself is subjected to random disturbances. Stochastic models like
generalized semi-Markov processes have a long history of application, but they do
not provide primitives for modelling of concurrency aspects Kulkarni (1995). They
also lack mechanisms for compositional specification. Thus models of larger systems
tend to be very complex.

A Markov chain analysis can be used to describe patterns of deposition and con-
ditional probability of occurrence of different rock types through transition proba-
bility matrices see for example Anderson and Goodman (1957). In these models, the
stochastic process used to represent the disposition sequence typically is assumed
to be homogeneous along the profile. Morkov chain models have also been used
for subsurface modelling. The occurrence of lithologies is viewed as a stochastic
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process. The stochastic analysis of a semi-Markov reliability model is rarely inves-
tigated during the last two decades. For a more extensive overview of the reliability
theory of repairable systems, see the well-known books Medhi (1982) and ,Korolyuk
and Swishchuk (1994).

In this section, we will display some important definitions and properties of a
semi-Markov process and its kernel. The evolution of many systems naturally ends
as the first failure occurs, because external intervention is not practicable. These
systems are non-repairable systems. For other systems, generally of high complexity,
renewal possibilities exist, and their effectiveness therefore depends not only on their
intrinsic reliability but also on the characteristics of maintenance and repair actions.

To take the repair actions into account, the concept of reliability must be re-
interpreted as an overall capacity of the system to accomplish a specified task.

To define the discrete renewal process, consider the continuous time interval
(0, t). The number of renewals N(t) occurring in this interval is a discrete stochastic
process, called a renewal process. Once the characteristics of this process are known
the reliability model, as predictions of the evolution of the system, can be made.
Preventive maintenance is scheduled downtime, usually periodically, in which de-
fined set of tasks, such as inspection and repair, replacement, cleaning, lubrication,
adjustment and alignment, are preformed.

To discuss the stochastic analysis of our reliability model, we present some im-
portant definitions. A semi Markov process {X(t) : t ≥ 0} is a stochastic process
in which changes of state occur according to a Markov chain and the time interval
between two successive transitions is a random variable whose distribution depends
on the state from which the transition takes place as well as the state to which
the next transition takes place Korolyuk and Swishchuk (1994). Generally a semi-
Markov process with discrete state space can be defined as a Markov renewal process
Grabski(1999). Assuming that the state space S is finite, we can define the renewal
kernel as follows:
Definition 1.1 The stochastic matrix Q(t) = [Qij(t); i, j ∈ S], t ≥ 0 is said to be a
renewal kernel if and only if the following conditions are satisfied:

1. The functions Qij(t) are nondecreasing functions in t.

2.
∑

j∈S Qij = Gi(t) are distribution functions in t.

3. [Qij(+∞) = Pij , i, j ∈ S] = P is a stochastic matrix.

Definition 1.2 A two-dimensional Markov process {ξn, ϑn, n ∈ N} with values in
S × [0,∞) is called a Markov renewal process if and only if

1. Qij = P{ξn+1 = j, ϑn+1 ≤ t|ξn = i, ϑn = tn, . . . , ξ0 = i0, ϑ0 = t0} = P{ξn+1 =
j, ϑn+1 ≤ t|ξn = i}.

2. P{ξ0 = i, ϑ0 = 0} = pi0.

From this definition it is follows directly that the Markov renewal process is a ho-
mogeneous two declensional Markov chain such that the probabilities of transition



Statistical Inference of Some Semi-Markov Reliability Models 169

depend only the discrete component (do not depend on the second components).
In the Markov renewal process, the non-negative random variables ϑn, n ≥ 1, can
defined as the interval between Markov renewal times:

τn =
n∑

k=1

ϑk, n ≥ 1, τ0 = 0 (1.1)

Now, let

ν(t) :=
∞∑

n=1

I[0,t](τ)

The process ν(t) is called a counting process. It determines the number of renewal
times on the segment [0, t].

In what follows, we will display some important concepts and definitions which
will be used throughout this paper and details about these definitions can be found
in Grabski (1999).

Definition 1.3 A stochastic process {X(t) : t ≥ 0} where X(t) = ξν(t) is called
a semi-Markov process that generated by the Markov renewal process with initial
distribution P 0

i = p(ξ0 = i) and the kernel Q(t), t ≥ 0.

Since the counting process ν(t) keeps constant values on the half-interval [tn, tn+1)
and is continuous from the right, then the semi-Markov process keeps also constant
values on the half intervals [τn, τn+1): Xn(t) = ξn for t ∈ [τn, τn+1). Moreover the
sequence {X(τn) : n ∈ N} is a Markov chain with transition probability matrix
P = {pij = Qij(∞), i, j ∈ S} that is called an embedded Markov chain. The
concept of a Markov renewal process is a natural generalization of the concept of
the ordinary renewal process given by a sequence of independent identically non-
negative random variables θn, n ≥ 1. The random variables θn can be interpreted
as lifetimes.

Now, using the definition (1.3), the following lemma can be formulated.

Lemma 1.4 If {X(t) : t ≥ 0} is a semi-Markov process with renewal kernel

Q(t) = Qij(t), i, j ∈ S, t ∈ [0,∞)

then

P{ξ0 = i0, ϑ0 = 0, ξ1 = i1, ϑ1 ≤ u1, . . . , ξn = in, ϑn ≤ un} = pi0

n∏

k=1

Qik−1ik(uk)

(1.2)

This lemma will be used to construct the likelihood function of some semi-Markov
reliability models.
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2 LIKLIHOOD FUNCTION

Assuming that the semi-Markov renewal kernel of the reliability model depends upon
a vector of unknown parameters θ = (θ1, θ2, . . . , θk). that is

Q(t|θ) = {Qij(t|θ) : i, j ∈ S}, (2.1)

Our aim in this paper is to find both Maximum likelihood estimators of those un-
known parameters, based on the realization of the semi-Markov process. Let us
assume that there is a sequence of random observations (i0, t0), (i1, t1), . . ., (in, tn)
of the random vector (ξ0, ϑ0), (ξ1, ϑ1), . . . , (ξn, ϑn). Suppose z denotes the observa-
tion (i0, t0), (i1, t1), . . . , (in, tn). We assume that there exist functions denoted by
qij(t|θ), i, j ∈ S such that

Qij(t|θ) =
∫ t

0
qij(u|θ)du (2.2)

Using lemma (1.4), the likelihood function for the given random observations of
the semi-Markov process becomes

L(z; θ) = pi0

n∏

s=1

qis−1is(ts|θ) (2.3)

In the Bayesian procedure, it is assumed that θ is a vector of random variables.
Then these random variables have a joint probability density function, say g(θ),
called a joint prior probability distribution function of θ. If the loss incurred when
the vector θ of the unknown parameters estimated by θ̂ is quadratic, then the value
of the Bayes estimator for θi becomes the posterior expectation, given by:

θ̂i = E(θi|z) =
∫

θig(θi|z)dθi, i = 1, 2, . . . k. (2.4)

Now, we proceed to apply maximum likelihood procedure to obtain estimators
of the unknown parameters included in a three-state semi Markov reliability model.
It is assumed that the lifetime of the system has a generalized Weibull distribution
with three parameters. Under the assumptions, that the life and repair times of
the standby system with repair are generalized Weibull, the reliability function of
the system is derived. The distribution of the first passage time of the system is
obtained.

3 SEMI-MARKOV STANDBY MODEL

The semi-Markov process is a convenient tool to describe many reliability models.
The model of this is slight modification of well known reliability model introduced
by Barlow and Proschan (1965), Pogosian (1973). In order to describe a reliability
model of a standby system with a repair facility, the following assumptions are
adopted:
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1. The system consists of one active unit, an identical spare, a switch and a repair
facility.

2. When the operating unit fails, the spare is put in motion by the switch imme-
diately.

3. The failed units can be repaired by the repair facility and the repair is fully
restore the units. This means that the repaired element can be considered as
new one.

4. The system fails when the active unit fails and repair has not been finished
yet or when the active unit fails and the switch fails .

5. The lifetimes of the active units can be represented by independent and identi-
cal non-negative random variables ζ with probability density function f(t), t ≥
0.

6. The lengths of repair periods of the units can be represented by independent
and identical non-negative random variable γ with the distribution function
H(t) = P{γ ≤ t}.

7. The event E denotes the switch-over as the active unit fails. Then the proba-
bility that the switch performs when required is represented by P (E) = a.

8. The whole system can also be repaired, and the failed system is replaced by a
new identical one.

9. The replacing time is represented by a non-negative random variable k with
distribution function C(t) = P{k ≤ t}.

10. Finally, we assume that all the random variables described above are indepen-
dent.

The underlying reliability model can be described by a semi-Markov process with
three states. Under the model assumptions, the states of the prescribed system can
be considered as follows:

1. The system failure represents the first state of the semi-Markov describing the
model and denoted by (0).

2. The failed unit is repaired and the standby unit is operating represents the
second state of the semi-Markov describing the model and denoted by (1).

3. Both active and standby units are ”Up” represents the third state of the semi-
Markov describing the model and denoted by (2)
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Let τ∗0 , τ∗1 , τ∗2 , . . . denote the instants when of the state of the system changes
where τ∗0 = 0 and let {Y (t) : t ≥ 0} be a stochastic process with state space
S = {0, 1, 2}. This process keeps constant values on the half intervals [τ∗n, τ∗n+1) and
is continuous from the right. Therefore, it is not a semi-Markov process.

Let us define a new stochastic process as follows:
Assuming that τ0 = 0 and τn, n = 1, 2, . . . represent the instants, when the

components of the system failed or the whole system renewal. The stochastic process
{X(t) : t ≥ 0} defined by

X(0) = 0, X(t) = Y (τn) for t ∈ [τn, τn+1) (3.1)

is a semi-Markov process and its kernel is given by the following matrix

Q(t) =




0 0 Q02

Q10 Q11 0
Q20 Q21 0


 (3.2)

The semi-Markov process {X(t), t ≥ 0} is completely specified by its semi-Markov
kernel. Let us deduce the elements of the semi-Markov kernel as follows:

Q02(t) = P{X(τn+1) = 2, ϑn+1 ≤ t|X(τn) = 0}
= P{k ≤ t} = K(t),

Q10(t) = P{X(τn+1) = 0, ϑn+1 ≤ t|X(τn) = 1}
= P{ζ ≤ t, γ > ζ}+ P{Ā, ζ ≤ t, γ < ζ}
=

∫ t

0
[1−H(t)]dF (t) + (1− a)

∫ t

0
H(x)dF (x)

= F (t)− a

∫ t

0
H(x)dF (x)

Q11(t) = P{X(τn+1) = 1, ϑn+1 ≤ t|X(τn) = 1}
= P{E, ξ1 ≤ t, ξ2 > ξ1} = a

∫ t
0 G(u)dF (u)

= P{E, ζ ≤ t, γ < ζ} = a

∫ t

0
H(x)dF (x)

Q21(t) = P{X(τn+1) = 1, ϑn+1 ≤ t|X(τn) = 2}
= P{E, ζ ≤ t} = aF (t)

Q20(t) = P{X(τn+1) = 0, ϑn+1 ≤ t|Y (τn) = 2}
= P{Ā, ζ ≤ t} = (1− a) F (t)

(3.3)

Using the relations between the elements of the semi-Markov kernel and their cor-
responding densities qij , i, j ∈ S we get:

q02(t) = k(t), t ≥ 0,
q10(t) = f(t)− aH(t)f(t), t ≥ 0,
q11(t) = aH(t)f(t), t ≥ 0,
q20(t) = (1− a)f(t), t ≥ 0,
q21(t) = a f(t), t ≥ 0.

(3.4)
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Many of statisticians are interested to search for new families of distributions or
generalized some of the presented distributions such that they have some properties
which enable to describe the lifetimes of some reliability systems and devices or to
describe sets of real data. It is well known that, some of the statistical distributions
have a constant failure rate such as the exponential distribution Gupta and Kundu
(2001), and other distributions have increasing failure rates such as linear failure
rate distribution, and some others with decreasing failure rates such as Weibull dis-
tribution with shape parameter does not exceed one and other distributions with all
of these types of failure rates on different periods of time such as those distributions
having failure rate of the bath-tub curve shape see for example Lai, et al. (2001)
and Lawless (2003).

Now, we assume that the lifetime of the active units have identically generalized
Weibull distribution with the parameters α, β and γ. That is,

f(t) = α β γ tβ−1 e−α tβ [1− e−αtβ ]γ−1, α, β, γ > 0, t ≥ 0 (3.5)

Substituting from (3.5) into the densities (3.4) of the semi-Markov kernel, we get

q10(t | θ) = α β γtβ−1 (1− aH(t)) e−α tβ [1− e−αtβ ]γ−1, a, α, β, γ > 0, t ≥ 0

q11(t | θ) = aα β γtβ−1 H(t) e−α tβ [1− e−αtβ ]γ−1, a, α, β, γ > 0, t ≥ 0

q20(t | θ) = (1− a) α β γtβ−1 e−α tβ [1− e−αtβ ]γ−1, a, α, β, γ > 0, t ≥ 0

q21(t | θ) = aα β γtβ−1 e−α tβ [1− e−αtβ ]γ−1, a, α, β, γ > 0, t ≥ 0




(3.6)

Next, we go to discuss the maximum likelihood estimation of the parameters
a, α, β and γ include in our reliability model.

4 MAXIMUM LIKLIHOOD ESTIMATES

In this section the maximum likelihood estimators of the unknown vector θ =
(a, α, β, γ) included in the generalized exponential reliability model are presented.
Suppose that z denotes the observations {(i0, t0), (i1, t1), . . . , (in, tn)} of two dimen-
sional random vector of variables, {(ξ0, ϑ0), (ξ1, ϑ1), . . . , (ξn, ϑn)} where i0, i1, . . . , tn
and t0, t1, . . . , tn ∈ [0,∞). Further, we assume that this observation is classified as
follows:

Let
Aij = {k : ik−1 = i, ik = j, k = 1, 2, . . . , n}

be the set of numbers of direct observed transition from the state i to the state j
and nij is the cardinal number of the set Aij which represents the number of direct
transitions from the state i to state j . In the present case we find that

n02 + n10 + n11 + n20 + n21 = n (4.1)
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Based on the above observation, the sample likelihood function L(z; θ) can be ob-
tained as follows:

Using (2.3) and (3.4) the sample likelihood function L(z; θ) takes the form

L(z; θ) =
∏

i∈A02

q02(ti)
∏

i∈A10

q10(ti)
∏

i∈A11

q11(ti)
∏

i∈A20

q20(ti)
∏

i∈A21

q21(ti) (4.2)

Substituting the semi-Markov densities from (3.6) into (4.2) we get

L(z; θ) = C an11+n21 (1− a)n20 W (a) (α β γ)m
∏

i∈L

tβ−1
i e−α tβi [1− e−α tβi ]γ−1, (4.3)

where
W (a) =

∏

i∈A10

[1− aH(ti)], C =
∏

i∈A02

c(ti),

L = A10 ∪A11 ∪A20 ∪A21, m = n10 + n11 + n20 + n21





Finally, the log of the sample likelihood function L can be written in the following
form

L = (n11 + n21) ln a + n20 ln(1− a) + lnW (a) + m ln(α β γ)+

(β − 1)
∑

i∈L

ln ti − α
∑

i∈L

tβi + (γ − 1)
∑

i∈L

ln [1− e−α tβi ] + lnC





(4.4)

The maximum likelihood estimators â, α̂, β̂ and γ̂ are the values of a, α, β and
γ, respectively that maximize the sample likelihood L. Equivalently a, α, β and γ
maximize the log sample likelihood since it is a monotone function of L(z, θ).

The maximum likelihood equations are given by :

∂L
∂a

= 0,
∂L
∂α

= 0,
∂L
∂β

= 0,
∂L
∂γ

= 0. (4.5)

Using (4.4) and (4.5) the maximum likelihood equations are

∂L
∂a

=
n11 + n21

a
− n20

1− a
+

1
W (a)

∂W (a)
∂a

= 0,

∂L
∂α

=
m

α
−

∑

i∈L

tβi − (γ − 1)
∑

i∈L

tβi e−α tβi

1− e−α tβi
= 0,

∂L
∂β

=
m

β
+

∑

i∈L

ln ti − α
∑

i∈L

tβi ln ti + α(γ − 1)
∑

i∈L

tβi ln ti e
−α tβi

1− e−α tβi
= 0,

∂L
∂γ

=
m

γ
+

∑

i∈L

ln [1− e−α tβi ] = 0,

(4.6)
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The maximum likelihood estimators (MLEs) â, α̂, β̂ and γ̂ for the unknown
parameters a, α, β and γ are the solution of the non-linear system (4.6). As it
seems, the general solution of this system is very difficult to find in a closed form.
The general solution is intractable and numerical procedures are required El-Gohary
and Sarhan (2003, 2004).

From (4.6), we obtain the MLE of γ as a function of α and β, namely γ̂(α, β)
where

γ̂(α, β) =
−m

∑
i∈L ln(1− e−αtβi )

(4.7)

Substituting γ̂(α, β) from (4.7) into (4.6) we obtain

g1(α, β) =
m

α
−

∑

i∈L

tβi +


m +

∑
i∈L(1− e−α tβi )

(1− e−α tβi )


 ∑

i∈L

tβi e−α tβi

1− e−α tβi
= 0,

g2(α, β) =
m

β
+

∑

i∈L

ln ti − α
∑

i∈L

tβi ln ti + α


m +

∑
i∈L(1− e−α tβi )

(1− e−α tβi )




∑
i∈L

tβi ln ti e
−α t

β
i

1−e
−α t

β
i

= 0

(4.8)

Therefore, MLEs of both α and β namely α̂ and β̂ can be obtained by solving (4.8)
with respect to α and β respectively.

Next, we discuss some important special cases of both the time lengths of the
repair periods of the units and the lifetimes of the active units.

5 SPECIAL CASES

This section is devoted to study some important special cases. Such these cases
occur when, both of the time lengths of the repair periods of the units and the
lifetimes of the active units are exponentially and generalized exponential random
variables.

In order to obtain the first special case, the following assumptions are needed:

1. The distribution of the time lengths of the repair periods of the units satisfy
the condition: 1− aH(ti) = 1− a for every i ∈ A10.

2. The lifetimes of the active units can be represented by identically generalized
exponential random variables with one parameter. That is, α = β = 1.

In this case, the MLEs are given by:

â =
n22 + n12

m
, γ̂ =

−m∑
i∈L ln(1− e−tk)

. (4.9)

The second special case can be obtained by considering the following assumptions:
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1. The distribution of the time lengths of the repair periods of the units satisfy
the condition: 1− aH(ti) = 1− a for every i ∈ A10.

2. The lifetimes of the active units can be represented by identically exponential
random variables with parameter α. That is, β = γ = 1

In this case, the MLEs are given by:

â =
n22 + n12

m
, α̂ =

τ

m
, τ =

∑

i∈L

ti. (4.10)

The third special case can be obtained by considering the following assump-
tions:

3. The distribution of the time lengths of the repair periods of the units satisfy
the condition: 1− aH(ti) = 1− a for every i ∈ A10.

4. The lifetimes of the active units can be represented by identically generalized
exponential random variables with two parameters α and γ. That is, β = 1

In this case, the MLEs are given by:

â =
n22 + n12

m
, α̂ =

τ

m
, τ =

∑

i∈L

ti. (4.11)

From (4.6), we obtain the MLE of γ as a function of α, namely γ̂(α) where

γ̂(α) =
−m∑

i∈L ln(1− e−α ti)
(4.12)

Putting γ̂(α) in (4.4) we obtain

g(a, α) = (n22 + n12) ln a + n13 ln(1− a) + m lnα− τα

−m ln

(∑

i∈L

-log(1− e−αti)

)
−

∑

i∈L

ln(1− e−αti) (4.13)

Therefore, MLEs of both a and α, namely â and α̂ can be obtained by maximizing
(4.13) with respect to a and α respectively. It is observed that both â and α̂ can be
obtained from the fixed point solution of h1(a) and h2(α) respectively, where

h1(a) =

(
n22 + n12 + n23 −

n23∑

i=1

1
1− aH(ti)

) [
m +

n23∑

i=1

1
1− aH(ti)

]−1

, (4.14)

h2(α) =

[∑
i∈L tie

−αti/(1− e−αti)∑
i∈L ln(1− e−αti)

+
1
m

∑

i∈L

ti
1− e−αti

]−1

, (4.15)

where, the function H(ti) can be considered as a known function of the observation
data z. An iterative procedure can be used to solve the Eqs (4.14) and (4.15) . The
MLEs â, α̂ can be obtained from (4.14) and (4.15).

Next, we discuss in details the reliability of our semi-Markov model that consists
of one active unit, an identical spare, a switch, and a repair facility.
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6 SYSTEM RELIABILITY

In what follows, we will obtain the system reliability of the semi-Markov reli-
ability model. Now, we will define the first passage time. In order to define the
first passage time, we should find an accurate answer for the question ”how many
transitions will the process take to reach state j for the first time if the system is
in state i at time zero”. The first passage time of the continuous-time semi-Markov
process can be measured in time or in terms of the number of transitions. We will
obtain the distribution ΘiA(t) of the first passage time from the state i to a state in
a subset A ⊂ S given that state i was entered at time zero and zeroth transition.

Assuming that A ⊂ S = {0, 1, 2} and Ā = S − A, we introduce the following
notations

∆A = inf{n ∈ N : X(τn) ∈ A}, (5.1)

and
fiA(n) = P{∆A = n|X(0) = i}, TA = τ∆A (5.2)

Thus, the function ΘiA(t) is given by

ΘiA(t) = P{TA ≤ t|X(0) = i}, i ∈ Ā (5.3)

represents the distribution of the first passage time of the semi-Markov process
{X(t) : t ≥ 0}, from the state i ∈ Ā to state in the subset A.

Now, we will define, a mean and the second moment of the first passage time
distribution as follows

Θ̄iA =
∫ ∞

0
tdΘiA(t), and, Θ̄2

iA =
∫ ∞

0
t2dΘiA(t), (5.4)

If A denotes the subset of the failed states of the model and i ∈ Ā is an initial
operating state such that P{X(0) = i} = 1, then the random variable TA represents
the lifetime or the time to failure of our system. That is, the reliability of the system
is

R(t) = 1−ΘiA(t), t ≥ 0 (5.5)

Using Grabski (1999), some of the reliability characteristics of the system can be
defined as follows:

q̄ik =
∫ ∞

0
tqik(t)dt, q̄2

ik =
∫ ∞

0
t2qik(t)dt (5.6)

To derive the reliability of the system, we will establish the following theorem.
Theorem 5.1 Consider the following systems:

1.

ΘiA(t) =
∑

j∈A

Qij(t) +
∑

k∈Ā

∫ t

0
ΘkA(t− u)qik(u)du, i ∈ Ā (5.7)
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2.
θ̄iA = ḡi +

∑

k∈Ā

pikθ̄ik, i ∈ Ā (5.8)

3.
θ̄iA = ḡ2

i + 2
∑

k∈Ā

q̄ikθ̄kA +
∑

k∈Ā

pikθ̄
2
ik, i ∈ Ā, (5.9)

which consist of a system of integral equations (5.7) and two linear algebraic systems
of equations (5.8) and (5.9). These systems have the only solution ΘiA(t), θ̄iA and
θ̄2
iA respectively, if the following conditions are satisfied

1.
fiA = 1 ∀ i ∈ Ā (5.10)

2.
∀i, j ∈ S ∃ d > 0 s.t. q̄2

ij < d (5.11)

3. ∞∑

k=1

k2fiA < ∞ ∀, i ∈ Ā (5.12)

The system of integral equations (5.7) is equivalent to its Laplace-Stieltjes system

ϑ̃iA(s) =
∑

j∈A

q̃ij(s) +
∑

k∈Ā

q̃ik(s)ϑ̃kA(s), i ∈ Ā (5.13)

where

ϑ̃iA(s) =
∫ ∞

0
e−st dΘiA(t)

dt
dt, q̃ij(s) =

∫ ∞

0
e−stqij(t)dt (5.14)

In the present model A = {0} and Ā = {1, 2}. From the solution of the system
(5.14), we have

ϑ̃20(s) =
q̃10(s)

1− q̃11(s)
, ϑ̃20(s) = q̃20(s) +

q̃21q̃10

1− q̃11(s)
(5.15)

Using the Laplace transformation, the reliability function (5.5) of the present model
is given by

R̃(s) =
1− ϑ̃20(s)

s
(5.16)

From the system of equations (5.8), we can get

θ̄20 = ḡ2 +
p21ḡ1

1− p11
(5.17)

For the present model we have:

ḡ1 = ḡ2 = E(ζ) = α β γ

∫ ∞

0
tβ−1 e−α tβ (1− e−α tβ )γ−1 dt
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For β = 1, we find that

ḡ1 =
1
α
{Ψ(γ + 1)−Ψ(1)} (5.18)

where Ψ(.) denotes the digamma function.

P21 =
∫ ∞

0
q21(t)dt = a

Substituting (5.17) into (5.16) we can obtain the mean of the lifetime of the present
system as follows:

E(TA|X(0) = 2) = θ̄20 =
1
α
{Ψ(γ + 1)−Ψ(1)}{1 +

a

1− p11
} (5.19)

where
p11 = aγα

∫ ∞

0
H(t)(1− e−α t) e−α t dt (5.20)

Now, an important special case can be obtained when γ = 1. In this case, the
lifetimes of the active units can be represented by identically exponential random
variables with parameter α. That is, γ = 1 and the mean of the lifetime of the
system is given by

E(TA|X(0) = 2) = θ̄20 =
1
α

+
a

α(1− p11)
, p11 = aα

∫ ∞

0
H(t)e−α t (5.21)

This result, as a special case from the presented results, agrees with the result
obtained by Grabski (1999) . This shows the effectiveness of the present method.

Exact reliability function
Estimate reliability function

 

Fig.1 Reliability function for a=0.5
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Fig.2 Reliability function for a=0.25
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Figures 1 and 2 display the graph of the system reliability function against time
for the set values of the switch probability parameter a = 0.5 and a = 0.25 respec-
tively and the set of sub-states A = {0} and Ā = {1, 2}. The solid curves represent
the reliability function corresponding to the estimated values of switch probability
parameter a while the dot curves represent the reliability function corresponding to
the exact values of switch probability parameter a.
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7 CONCLUSION

Finally, we conclude that the stochastic analysis of the semi-Markov reliability
model is discussed and the likelihood procedure is used to obtain estimators of the
parameters included in a three-state standby with repair semi-Markov model. The
distribution of the first passage time is discussed. The reliability function of this
model is derived. Many special cases are discussed.

REFERENCES

El-Gohary, A. (2005) Estimation of Parameters in a Generalized Exponential Semi-
Markov Re- liability Models, International Journal of Reliability and Applications
June 2005 Vol. 6, No. 1,pp. 13-30

El-Gohary, A. (2004) Bayesian estimations of parameters in a three state reliability
semi-Markov models, Applied Mathematics and Computation, Vol 154, (1),pp. 53-
68.

T. W. Anderson and L. A. Goodman, Statistical inference about Markov chains,
Annals of Mathematical Statistics 28, pp. 89-116, 1957.

M. F. Dacay and W. C. Krumbein, Markov models in stratigraphy, Journal Inter.
Association of Mathematical Geology, 2 pp175-191 (1970).

W. C. Krumbein and F. A. Graybill, Introduction to statistical models in geology
475 pp., McGraw Hill Book company New York, 1965.

J. M. Reinhard and M. Snoussi, The severity of run in a discrete semi Markov risk
model, Stochastic Models 18(1) pp. 85-107 (2002).

J. Medhi ”Stochastic Processes” Wiley Eastern Limited (1982).

Korolyuk V. and Swishchuk, Semi-Markov Random Evolution, Kluwer Academic
Publishers (1994).

F. Grabski ” Bayesian estimation of parameters in Semi-Markov reliability Mod-
els” The tenth European conference on Safety and Reliability Engineering Germany
(1999).

J. Janssen and R. Manca, ”Salary cost evaluation by means of non-Homogeneous
semi-Markov processes”, Stochastic Models 18(1) pp. 7-23 (2002).

A. Sarhan and A. El-Gohary ”Parameters estimations of 1-out-of-2 G repairable
system” Applied Mathematics and Computation, (2003), Volume 145, Issues 2-3,
25, Pages 469-479.

R. D. Gupta and Kundu, Generalized Exponential distribution different method of
estimating, Journal of Statistical Computer Simulation Vol. 69, pp. 315-337, (2001).

Awad El-Gohary and A. Sarhan, (2004) Estimations of the parameters in a three



Statistical Inference of Some Semi-Markov Reliability Models 181

non-independent component series system subjected to sources of shocks, Applied
Mathematics and Computation, Volume 160, Issue 1, 5 January 2005,pp. 29-40.

Lai, C. D. Xie, M. and Murthy, D. N. P. (2001), Bathtub shaped failure rate distri-
butions, in Handbook in Reliability, N. Balakrishnan and C. R. Rao, Eds., vol. 20,
pp. 69104.

Lawless, J. F. (2003) Statistical Models and Methods for Lifetime Data, John Wiley
and Sons, New York.

Kulkarni,V.G. Modeling and Analysis of Stochastic Systems, Chapman & Hall, 1995.

Barlow, E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Test-
ing: Probability Models, To Begin With, Silver Spring, MD.




