• Title/Summary/Keyword: marine-derived natural substances

Search Result 9, Processing Time 0.026 seconds

Beneficial Effects of Marine Bioactive Substances on Bone Health, via Osteoarthritis Inhibition and Osteoblast Differentiation

  • Nguyen, Minh Hong Thi;Qian, Zhong-Ji;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Bone health is maintained by balance between bone resorption and bone formation, and bone homeostasis requires balanced interactions between osteoblasts and osteoclasts. Most of drugs and functional foods for bone health have been developed as bone resorption inhibitors, which maintain bone mass by inhibiting the function of osteoclasts. The recent studies have shown beneficial effects of marine natural products on bone health. Therefore, this review is aimed to study effects of marine-derived natural substances on osteoarthritis inhibition via attenuation of MMPs and osteoblastic differentiation via activation of alkaline phosphatase (ALP), osteoclacin (OC), bone morphogenic protein-2 (BMP-2) as an important factor for bone formation, and mineralization. The present review can provide new insights in the osteoblastic differentiation of marine natural products and possibility for their application in bone health supplement.

Antimicrobial Peptides Derived from the Marine Organism(s) and Its Mode of Action (해양 생물 유래의 항균 펩타이드 및 작용 기작)

  • Hwang, Bo-Mi;Lee, June-Young;Lee, Dong-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • Recently, marine organisms are emerging as a leading group for identifying and extracting novel bioactive substances. These substances are known to possess a potential regarding not only as a source of pharmaceutical products but also their beneficial effects on humans. Among the substances, antimicrobial peptides (AMPs) specifically have attracted considerable interest for possible use in the development of new antibiotics. AMPs are characterized by relatively short cationic peptides containing the ability to adopt a structure in which cationic or hydrophobic amino acids are spatially scattered. Although a few reports address novel marine organisms-derived AMPs, their antimicrobial mechanism(s) are still remain unknown. In this review, we summarized the peptides previously investigated, such as Pleurocidin, Urechistachykinins, Piscidins and Arenicin-1. These peptides exhibited significant antimicrobial activities against human microbial pathogens without remarkable hemolytic effects against human erythrocytes, and their mode of actions are based on permeabilization of the plasma membrane of the pathogen. Therefore, the study of antimicrobial peptides derived from marine organisms may prove to be useful in the design of future therapeutic antimicrobial drugs.

Identification of Polyphenol Substances (MP-1) from Seagrass, Phyllospadix Japonica Makino (잘피 게바다말로부터 폴리페놀 물질(MP-1)의 분리 및 동정)

  • Kim, Hae-Seon;Park, Nyun-Ho;Suk, Ho-young;You, Sang-guan;Woo, Jung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.50-54
    • /
    • 2022
  • BACKGROUND: Phyllospadix japonica Makino is a perennial plant belonging to the family Zosteraceae. This species is native to the eastern coast of the Korean Peninsula, and it is found attached to rocks on the seashore. As with all seagrass species, P. japonica is also known to play a major role in protecting the marine environment, and studies on its physiological activities suggestive of its antioxidant, antibacterial and anti-inflammatory potentials have been reported. In this study, purification and structural analysis were performed to identify the polyphenol substances derived from P. japonica. METHODS AND RESULTS: An polyphenol substance MP-1 was purified from the 70% aqueous methanol extract of P. japonica using Diaion® HP-20 column chromatography, ODS column chromatography, and medium-pressure liquid chromatography (MPLC). The purified MP-1 was identified as rosmarinic acid having a molecular weight of 360 and a molecular formula of C18H16O8 through electrospray ionization (ESI)-mass and nuclear magnetic resonance (NMR) spectroscopic analysis. CONCLUSION(S): This study highlights the processes used for the identification of the polyphenol substance derived from P. japonica. Rosmarinic acid, the polyphenol derived from P. japonica identified by this study, is a kind of bioactive substance mainly present in plants. These findings provide an important starting point and are valuable for future studies on bioactive substances in seagrass.

Oral Pathogens and Their Antibiotics from Marine Organisms: A Systematic Review of New Drugs for Novel Drug Targets

  • Sehyeok Im;Jun Hyuck Lee;Youn-Soo Shim
    • Journal of dental hygiene science
    • /
    • v.24 no.2
    • /
    • pp.84-96
    • /
    • 2024
  • Background: Recent studies have elucidated the quorum-sensing mechanisms, biofilm formation, inter-pathogen interactions, and genes related to oral pathogens. This review aims to explore the recent expansion of drug targets against oral pathogens and summarize the current research on novel antibiotic substances derived from marine organisms that target oral pathogens. Methods: A comprehensive literature review summarized the novel mechanisms pertaining to quorum-sensing signal transmission systems, biofilm formation, and metabolite exchange in oral pathogens. The amino acid sequences of the 16 proteins identified as potential drug targets were systematically classified and compared across various oral microorganisms. Results: Through a literature review, we identified nine studies researching quorum sensing signaling inhibitors targeting oral pathogens. A comparison of the amino acid sequences of 16 potential drug targets in oral microorganisms revealed significant differences between oral pathogens and beneficial oral symbiotic microorganisms. These findings imply that it is possible to design drugs that can bind more selectively to oral pathogens. Conclusion: By summarizing the results of recent research on the signaling mechanisms that cause pathogenicity, new drug targets against oral pathogens were proposed. Additionally, the current status of developing new antibiotics for oral pathogens using recently developed quorum sensing inhibitors and natural products derived from marine organisms was introduced. Consequently, marine natural products can be used to develop drugs targeting new proteins in oral pathogens.

Development of functional food products with natural materials derived from marine resources (건강기능성 수산식품소재의 개발)

  • Ryu, BoMi;Jeon, You-Jin
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.157-164
    • /
    • 2018
  • Recently demand for safer and healthier food has augmented with advancements in health conditions. Food ingredients with yet to be known safety and functionality, are being investigated for their safety or detrimental effects. The Ministry of Food and Drug Safety has introduced "health functional food" by the "Health Functional Food Act" to evaluate bio-functional and safety properties of raw materials using standard methods including in-vitro and in-vivo testing before human consumption. Despite recent growth in net worth of domestic functional food market, most of the raw materials are not from local Korean industries with own research and development, and mostly terrestrial not marine resources. Geographically, Korea has access to diverse marine bio-resources that need to be managed and utilized sustainably. Recently, diverse novel physiologically active substances have been reported from marine organisms. Hence, the development of functional foods from marine bio-resources is considered as an inevitably important task.

Rapid separation of Capsicum annuum L. leaf extract using automated HPLC/SPE/HPLC coupling system (Sepbox system) and identification of α-glucosidase inhibitory active substances (자동화 HPLC/SPE/HPLC 시스템(Sepbox system)을 활용한 고추 잎 (leaf of Capsicum annuum L.) 추출물 분리 및 α-glucosidase 억제 활성 물질 탐색)

  • Kim, Min-Seon;Jin, Jong Beom;Lee, Jung Hwan;An, Hye Suck;Pan, Cheol-Ho;Park, Jin-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • Phytochemicals include plant-derived natural products that promote and improve the human metabolism and physiological activity, and there is a lot of research to find the value of the molecules is in progress. Likewise, we obtained 288 fractions of Capsicum annuum L. extract in less than 20 h using HPLC/SPE/HPLC coupling experiment through Sepbox system, an effective separation system to search for active substances in natural resources and ensure efficacy and reliability. Therefore, this experiment allowed rapid identification of biologically active molecules from the extract compared to traditional separation processes. Of the above fractions, eight fractions showed the α-glucosidase inhibitory (AGI) activity and subsequent LC-MS analysis revealed one of the active molecules as luteolin 7-O-glucoside. In addition, we proved the increase in AGI activity according to deglycosylation of flavonoid glycoside. Therefore, this study suggests that the Sepbox system can quickly separate and identify active components from plant extract, and is an effective technique for finding new active substances.

Development of Life Science and Biotechnology by Marine Microorganisms (해양 미생물을 활용한 생명과학 및 생명공학 기술 개발)

  • Yongjoon Yoon;Bohyun Yun;Sungmin Hwang;Ki Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.593-604
    • /
    • 2023
  • The ocean accounts for over 70% of the Earth's surface and is a space of largely unexplored unknowns and opportunities. Korea is a peninsula surrounded by the sea on three sides, emphasizing the importance of marine research. The ocean has an extremely complex environment with immense biological diversity. In terms of microbiology, the marine environment has varying factors like extreme temperature, pressure, solar radiation, salt concentration, and pH, providing ecologically unique habitats. Due to this variety, marine organisms have very different phylogenetic classifications compared with terrestrial organisms. Although various microorganisms inhabit the ocean, studies on the diversity, isolation, and cultivation of marine microorganisms and the secondary metabolites they produce are still insufficient. Research on bioactive substances from marine microorganisms, which were rarely studied until the 1990s, has accelerated in terms of natural products from marine Actinomycetes since the 2000s. Since then, industries for bioplastic and biofuel production, carbon dioxide capture, probiotics, and pharmaceutical discovery and development of antibacterial, anticancer, antioxidant, and anti-inflammatory drugs using bacteria, archaea, and algae have significantly grown. In this review, we introduce current research findings and the latest trends in life science and biotechnology using marine microorganisms. Through this article, we hope to create consumer awareness of the importance of basic and applied research in various natural product-related discovery fields other than conventional pharmaceutical drug discovery. The article aims to suggest pathways that may boost research on the optimization and application of future marine-derived materials.

Chondroprotective Effects of a 30% Ethanol Extract of Sargassum fulvellum (모자반(Sargassum fulvellum) 주정 30% 추출물의 In Vitro에서의 연골 보호효과)

  • Jang, Goeun;Han, Seul Hee;Kim, Do Kyung;Kim, Chun Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.867-874
    • /
    • 2022
  • Osteoarthritis (OA) is an inflammatory disease due to wear caused by the continuous use of cartilage. Although many drugs for treating OA are being studied, they have side effects, such as digestive disorders and cardiovascular diseases. Glucosamine, a drug derived from natural products, is known to be less effective. Therefore, the marine organism, Sargassum fulvellum, was studied to determine whether it contains substances with a chondroprotective effect on the inflammatory response of chondrocytes induced by interleukin-1β (IL-1β). A 30% ethanol extract of S. fulvellum (SF30%EtOH) has therapeutic and few side effects. We first confirmed the presence of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), which is expressed during inflammatory reactions. We then examined the expression of collagen type II, which is the main component of the extracellular matrix and cartilage. Finally, the expression of extracellular matrix degrading enzymes, MMPs and ADAMTS-4 and -5, was confirmed. The results showed that SF30%EtOH reduced the expression levels of NO, iNOS, MMPs, and ADAMT-4 and -5, and increased the expression level of collagen type II in chondrocytes induced with IL-1β. Therefore, SF30%EtOH has a chondroprotective effect against inflammation, indicating its potential use for the prevention and treatment of OA.

Development of Axenic Culture and Astaxanthin Production in Microalgae (미세조류를 이용한 무균분리법 개발 및 astaxanthin 생산)

  • Son, Min Chang;Lee, Dong-Jun;Park, Sejin;Kim, Min Sung;Lee, Chul Won;An, Won Gun
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.733-739
    • /
    • 2015
  • Microalgae are a renewable natural resource that requires only sunlight, carbon dioxide, phosphorus, and nitrogen for rapid growth. They produce a broad variety of basic chemical substances―such as vitamins, fatty acids and carotenoids―that have high added value potential for the pharmaceutical and food industries. The aim of this study was to develop axenic culture and to establish a cell growth assay for microalgae. A further experiment was carried out to determine the yield of astaxanthin derived from microalgae. The axenic culture was developed using a mixture of antibiotics [ampicillin (100 ${\mu}g/ml$), streptomycin (10 ${\mu}g/ml$), chloramphenicol (10 ${\mu}g/ml$), penicillin (10 ${\mu}g/ml$), neomycin (50 ${\mu}g/ml$), gentamycin (50 ${\mu}g/ml$), kanamycin (10 ${\mu}g/ml$), and nystatin (1.5 ${\mu}g/ml$)] and then used to extract a variety of useful components from the microalgae. The optimal concentration for the antibiotic mixture was 1-3 percent. A spectrophotometric cell growth assay was also established. Astaxanthin was extracted from Haematococus lacustris with a yield of $1.9{\times}10^{-3}{\mu}g/l$ per 1 ml of culture medium. In conclusion, the axenic culture method developed here allows extraction of high-quality astaxanthin and other useful components from microalgae.