DOI QR코드

DOI QR Code

Oral Pathogens and Their Antibiotics from Marine Organisms: A Systematic Review of New Drugs for Novel Drug Targets

  • Sehyeok Im (Division of Life Sciences, Korea Polar Research Institute) ;
  • Jun Hyuck Lee (Division of Life Sciences, Korea Polar Research Institute) ;
  • Youn-Soo Shim (Department of Dental Hygiene, Sunmoon University)
  • Received : 2024.05.01
  • Accepted : 2024.06.05
  • Published : 2024.06.30

Abstract

Background: Recent studies have elucidated the quorum-sensing mechanisms, biofilm formation, inter-pathogen interactions, and genes related to oral pathogens. This review aims to explore the recent expansion of drug targets against oral pathogens and summarize the current research on novel antibiotic substances derived from marine organisms that target oral pathogens. Methods: A comprehensive literature review summarized the novel mechanisms pertaining to quorum-sensing signal transmission systems, biofilm formation, and metabolite exchange in oral pathogens. The amino acid sequences of the 16 proteins identified as potential drug targets were systematically classified and compared across various oral microorganisms. Results: Through a literature review, we identified nine studies researching quorum sensing signaling inhibitors targeting oral pathogens. A comparison of the amino acid sequences of 16 potential drug targets in oral microorganisms revealed significant differences between oral pathogens and beneficial oral symbiotic microorganisms. These findings imply that it is possible to design drugs that can bind more selectively to oral pathogens. Conclusion: By summarizing the results of recent research on the signaling mechanisms that cause pathogenicity, new drug targets against oral pathogens were proposed. Additionally, the current status of developing new antibiotics for oral pathogens using recently developed quorum sensing inhibitors and natural products derived from marine organisms was introduced. Consequently, marine natural products can be used to develop drugs targeting new proteins in oral pathogens.

Keywords

Acknowledgement

This research was supported by the project titled "Development of potential antibiotic compounds using polar organism resources (20200610, KOPRI Grant PM24030)", funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. Takahashi N: Oral microbiome metabolism: from "who are they?" to "what are they doing?". J Dent Res 94: 1628-1637, 2015. https://doi.org/10.1177/0022034515606045 
  2. Xu X, He J, Xue J, et al.: Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol 17: 699-710, 2015. https://doi.org/10.1111/1462-2920.12502 
  3. Bowen WH, Burne RA, Wu H, Koo H: Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 26: 229-242, 2018. https://doi.org/10.1016/j.tim.2017.09.008 
  4. Marsh PD: Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am 54: 441-454, 2010. https://doi.org/ 10.1016/j.cden.2010.03.002 
  5. Marsh PD: Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health 6 Suppl 1: S14, 2006. https://doi.org/10.1186/1472-6831-6-S1-S14 
  6. Debelian GJ, Olsen I, Tronstad L: Systemic diseases caused by oral microorganisms. Endod Dent Traumatol 10: 57-65, 1994. https://doi.org/10.1111/j.1600-9657.1994.tb00061.x 
  7. Beck JD, Offenbacher S: Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol 76: 2089-2100, 2005. https://doi.org/10.1902/jop.2005.76.11-S.2089 
  8. Borgnakke WS, Ylostalo PV, Taylor GW, Genco RJ: Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence. J Clin Periodontol 40: S135-S152, 2013. https://doi.org/10.1111/jcpe.12080 
  9. Olsen I, Yilmaz O: Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol 11: 1563410, 2019. https://doi.org/10.1080/20002297.2018.1563410 
  10. Kononen E, Fteita D, Gursoy UK, Gursoy M: Prevotella species as oral residents and infectious agents with potential impact on systemic conditions. J Oral Microbiol 14: 2079814, 2022. https://doi.org/10.1080/20002297.2022.2079814 
  11. Issrani R, Reddy J, Dabah THE, et al.: Exploring the mechanisms and association between oral microflora and systemic diseases. Diagnostics (Basel) 12: 2800, 2022. https://doi.org/10.3390/diagnostics12112800 
  12. Aas JA, Griffen AL, Dardis SR, et al.: Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46: 1407-1417, 2008. https://doi.org/10.1128/JCM.01410-07 
  13. Yanagisawa M, Kuriyama T, Williams DW, Nakagawa K, Karasawa T: Proteinase activity of Prevotella species associated with oral purulent infection. Curr Microbiol 52: 375-378, 2006. https://doi.org/10.1007/s00284-005-0261-1 
  14. Neilands J, Wickstrom C, Kinnby B, et al.: Bacterial profiles and proteolytic activity in peri-implantitis versus healthy sites. Anaerobe 35: 28-34, 2015. https://doi.org/10.1016/j.anaerobe.2015.04.004 
  15. van Winkelhoff AJ, Loos BG, van der Reijden WA, van der Velden U: Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction. J Clin Periodontol 29: 1023-1028, 2002. https://doi.org/10.1034/j.1600-051x.2002.291107.x 
  16. Bostanci N, Belibasakis GN: Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333: 1-9, 2012. https://doi.org/10.1111/j.1574-6968.2012.02579.x 
  17. Bao K, Belibasakis GN, Thurnheer T, Aduse-Opoku J, Curtis MA, Bostanci N. Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiol 14: 258, 2014. https://doi.org/10.1186/s12866-014-0258-7 
  18. Scannapieco FA: Role of oral bacteria in respiratory infection. J Periodontol 70: 793-802, 1999. https://doi.org/10.1902/jop.1999.70.7.793 
  19. Williams D, Lewis M: Pathogenesis and treatment of oral candidosis. J Oral Microbiol 3: 5771, 2011. https://doi.org/10.3402/jom.v3i0.5771 
  20. Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA: Oral candidiasis: a disease of opportunity. J Fungi (Basel) 6: 15, 2020. https://doi.org/10.3390/jof6010015 
  21. Patil S, Rao RS, Sanketh DS, Amrutha N: Microbial flora in oral diseases. J Contemp Dent Pract 14: 1202-1208, 2013. https://doi.org/10.5005/jp-journals-10024-1477 
  22. Deepa A, Nair BJ, Sivakumar T, Joseph AP: Uncommon opportunistic fungal infections of oral cavity: a review. J Oral Maxillofac Pathol 18: 235-243, 2014. https://doi.org/10.4103/0973-029X.140765 
  23. Seifert HS: Location, location, location-commensalism, damage and evolution of the pathogenic Neisseria. J Mol Biol 431: 3010-3014, 2019. https://doi.org/10.1016/j.jmb.2019.04.007 
  24. Giacomini JJ, Torres-Morales J, Tang J, Dewhirst FE, Borisy GG, Mark Welch JL: Spatial ecology of Haemophilus and Aggregatibacter in the human oral cavity. Microbiol Spectr 12: e0401723, 2024. https://doi.org/10.1128/spectrum.04017-23 
  25. Jakubovics NS, Kolenbrander PE: The road to ruin: the formation of disease-associated oral biofilms. Oral Dis 16: 729-739, 2010. https://doi.org/10.1111/j.1601-0825.2010.01701.x 
  26. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS: Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 8: 471-480, 2010. https://doi.org/10.1038/nrmicro2381 
  27. Hasty DL, Ofek I, Courtney HS, Doyle RJ: Multiple adhesins of streptococci. Infect Immun 60: 2147-2152, 1992. https://doi.org/10.1128/iai.60.6.2147-2152.1992 
  28. Jakubovics NS, Kerrigan SW, Nobbs AH, et al.: Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun 73: 6629-6638, 2005. https://doi.org/10.1128/IAI.73.10.6629-6638.2005 
  29. Jakubovics NS, Stromberg N, van Dolleweerd CJ, Kelly CG, Jenkinson HF: Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol 55: 1591-1605, 2005. https://doi.org/10.1111/j.1365-2958.2005.04495.x 
  30. Llor C, Bjerrum L: Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5: 229-241, 2014. https://doi.org/10.1177/2042098614554919 
  31. Wright GD, Sutherland AD: New strategies for combating multidrug-resistant bacteria. Trends Mol Med 13: 260-267, 2007. https://doi.org/10.1016/j.molmed.2007.04.004 
  32. Alonso A, Campanario E, Martinez JL: Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145: 2857-2862, 1999. https://doi.org/10.1099/00221287-145-10-2857 
  33. Terreni M, Taccani M, Pregnolato M: New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 26: 2671, 2021. https://doi.org/10.3390/molecules26092671 
  34. Brooks L, Narvekar U, McDonald A, Mullany P: Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: a systematic review. Mol Oral Microbiol 37: 133-153, 2022. https://doi.org/10.1111/omi.12375 
  35. Demain AL: Antibiotics: natural products essential to human health. Med Res Rev 29: 821-842, 2009. https://doi.org/10.1002/med.20154 
  36. Demain AL: Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41: 185-201, 2014. https://doi.org/10.1007/s10295-013-1325-z 
  37. Moloney MG: Natural products as a source for novel antibiotics. Trends Pharmacol Sci 37: 689-701, 2016. https://doi.org/10.1016/j.tips.2016.05.001 
  38. Mehbub MF, Perkins MV, Zhang W, Franco CMM: New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnol Adv 34: 473-491, 2016. https://doi.org/10.1016/j.biotechadv.2015.12.008 
  39. Stonik VA, Makarieva TN, Shubina LK: Antibiotics from marine bacteria. Biochemistry (Mosc) 85: 1362-1373, 2020. https://doi.org/10.1134/S0006297920110073 
  40. Fiedler HP, Bruntner C, Bull AT, et al.: Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87: 37-42, 2005. https://doi.org/10.1007/s10482-004-6538-8 
  41. Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W: Marine actinomycetes, new sources of biotechnological products. Mar Drugs 19: 365, 2021. https://doi.org/10.3390/md19070365 
  42. Deng Y, Liu Y, Li J, et al.: Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 239: 114513, 2022. https://doi.org/10.1016/j.ejmech.2022.114513 
  43. Liu M, Liu Y, Cao MJ, et al.: Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr Polym 172: 294-305, 2017. https://doi.org/10.1016/j.carbpol.2017.05.060 
  44. Oka S, Okabe M, Tsubura S, Mikami M, Imai A: Properties of fucoidans beneficial to oral healthcare. Odontology 108: 34-42, 2020. https://doi.org/10.1007/s10266-019-00437-3 
  45. Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK: Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60: 366-374, 2013. https://doi.org/10.1016/j.ijbiomac.2013.06.030 
  46. Fitton JH: Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9: 1731-1760, 2011. https://doi.org/10.3390/md9101731 
  47. de A. Lima B, de Lira SP, Kossuga MH, Goncalves RB, Berlinck RGS, Kamiya RU: Halistanol sulfate A and rod-riguesines A and B are antimicrobial and antibiofilm agents against the cariogenic bacterium Streptococcus mutans. Rev Bras Farmacogn 24: 651-659, 2014. https://doi.org/10.1016/j.bjp.2014.11.002 
  48. Fusetani N, Matsunaga S, Konosu S: Bioactive marine metabolites II. Halistanol sulfate, an antimicrobial novel steroid sulfate from the marine sponge Halichondria cf. Moorei bergquist. Tetrahedron Lett 22: 1985-1988, 1981. https://doi.org/10.1016/S0040-4039(01)92885-0 
  49. Schneemann I, Kajahn I, Ohlendorf B, et al.: Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. J Nat Prod 73: 1309-1312, 2010. https://doi.org/10.1021/np100135b 
  50. Matsuda S, Adachi K, Matsuo Y, Nukina M, Shizuri Y: Salinisporamycin, a novel metabolite from Salinispora arenicola. [corrected]. J Antibiot (Tokyo) 62: 519-526, 2009. https://doi.org/10.1038/ja.2009.75 
  51. Sabido EM, Tenebro CP, Suarez AFL, et al.: Marine sediment-derived Streptomyces strain produces angucycline antibiotics against multidrug-resistant Staphylococcus aureus harboring SCCmec type 1 gene. J Mar Sci Eng 8: 734, 2020. https://doi.org/10.3390/jmse8100734 
  52. Radjasa OK, Salasia SIO, Sabdono A, et al.: Antibacterial activity of marine bacterium Pseudomonas sp. Associated with soft coral Sinularia polydactyla against Streptococcus equi subsp. Zooepidemicus. Int J Pharmacol 3: 170-174, 2007. https://doi.org/10.3923/ijp.2007.170.174 
  53. Noga EJ, Stone KL, Wood A, Gordon WL, Robinette D: Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab. Dev Comp Immunol 35: 409-415, 2011. https://doi.org/10.1016/j.dci.2010.11.015 
  54. Fernandez-Pena L, Matos MJ, Lopez E: Recent advances in biologically active coumarins from marine sources: synthesis and evaluation. Mar Drugs 21: 37, 2023. https://doi.org/10.3390/md21010037 
  55. He Z, Jiang W, Jiang Y, et al.: Anti-biofilm activities of coumarin as quorum sensing inhibitor for Porphyromonas gingivalis. J Oral Microbiol 14: 2055523, 2022. https://doi.org/10.1080/20002297.2022.2055523 
  56. Wright CJ, Wu H, Melander RJ, Melander C, Lamont RJ: Disruption of heterotypic community development by Porphyromonas gingivalis with small molecule inhibitors. Mol Oral Microbiol 29: 185-193, 2014. https://doi.org/10.1111/omi.12060 
  57. Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, et al.: Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect Dis 17: e30-e41, 2017. https://doi.org/10.1016/S1473-3099(16)30323-1 
  58. Kumar R, Subramani R, Feussner KD, Aalbersberg W: Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar Drugs 10: 200-208, 2012. https://doi.org/10.3390/md10010200 
  59. Sbordone L, Bortolaia C: Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin Oral Investig 7: 181-188, 2003. https://doi.org/10.1007/s00784-003-0236-1 
  60. Kilian M: The oral microbiome - friend or foe? Eur J Oral Sci 126: 5-12, 2018. https://doi.org/10.1111/eos.12527 
  61. Sultan AS, Kong EF, Rizk AM, Jabra-Rizk MA: The oral microbiome: a lesson in coexistence. PLoS Pathog 14: e1006719, 2018. https://doi.org/10.1371/journal.ppat.1006719 
  62. Dewhirst FE, Chen T, Izard J, et al.: The human oral microbiome. J Bacteriol 192: 5002-5017, 2010. https://doi.org/10.1128/JB.00542-10 
  63. Baty JJ, Stoner SN, Scoffield JA: Oral commensal streptococci: gatekeepers of the oral cavity. J Bacteriol 204: e0025722, 2022. https://doi.org/10.1128/jb.00257-22 
  64. Hutcherson JA, Sinclair KM, Belvin BR, Gui Q, Hoffman PS, Lewis JP: Amixicile, a novel strategy for targeting oral anaerobic pathogens. Sci Rep 7: 10474, 2017. https://doi.org/10.1038/s41598-017-09616-0 
  65. Gui Q, Hoffman PS, Lewis JP: Amixicile targets anaerobic bacteria within the oral microbiome. J Oral Biosci 61: 226-235, 2019. https://doi.org/10.1016/j.job.2019.10.004 
  66. Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO: Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15: 656-667, 2010. https://doi.org/10.1016/j.drudis.2010.05.015 
  67. Stone VN, Xu P: Targeted antimicrobial therapy in the microbiome era. Mol Oral Microbiol 32: 446-454, 2017. https://doi.org/10.1111/omi.12190 
  68. Soga S, Shirai H, Kobori M, Hirayama N: Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 47: 400-406, 2007. https://doi.org/10.1021/ci6002202 
  69. Fuqua WC, Winans SC, Greenberg EP: Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176: 269-275, 1994. https://doi.org/10.1128/jb.176.2.269-275.1994 
  70. Shao H, Demuth DR: Quorum sensing regulation of biofilm growth and gene expression by oral bacteria and periodontal pathogens. Periodontol 2000 52: 53-67, 2010. https://doi.org/10.1111/j.1600-0757.2009.00318.x 
  71. Niazy AA: LuxS quorum sensing system and biofilm formation of oral microflora: a short review article. Saudi Dent J 33: 116-123, 2021. https://doi.org/10.1016/j.sdentj.2020.12.007 
  72. Stewart PS, Costerton JW: Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138, 2001. https://doi.org/10.1016/s0140-6736(01)05321-1 
  73. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O: Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35: 322-332, 2010. https://doi.org/10.1016/j.ijantimicag.2009.12.011 
  74. Jenkinson HF, Demuth DR: Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol Microbiol 23: 183-190, 1997. https://doi.org/10.1046/j.1365-2958.1997.2021577.x 
  75. Ahn SJ, Ahn SJ, Wen ZT, Brady LJ, Burne RA: Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun 76: 4259-4268, 2008. https://doi.org/10.1128/IAI.00422-08 
  76. Arciola CR, Campoccia D, Ravaioli S, Montanaro L: Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5: 7, 2015. https://doi.org/10.3389/fcimb.2015.00007 
  77. Sharma A, Inagaki S, Sigurdson W, Kuramitsu HK: Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol Immunol 20: 39-42, 2005. https://doi.org/10.1111/j.1399-302X.2004.00175.x 
  78. Okuda T, Kokubu E, Kawana T, Saito A, Okuda K, Ishihara K: Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe 18: 110-116, 2012. https://doi.org/10.1016/j.anaerobe.2011.09.003 
  79. Sarangi AN, Aggarwal R, Rahman A, Trivedi N: Subtractive genomics approach for in silico identification and characterization of novel drug targets in Neisseria meningitides serogroup B. J Comput Sci Syst Biol 2: 255-258, 2009. https://doi.org/10.4172/jcsb.1000038 
  80. Gerits E, Verstraeten N, Michiels J: New approaches to combat Porphyromonas gingivalis biofilms. J Oral Microbiol 9: 1300366, 2017. https://doi.org/10.1080/20002297.2017.1300366 
  81. Rasmussen TB, Givskov M: Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296: 149-161, 2006. https://doi.org/10.1016/j.ijmm.2006.02.005 
  82. Haque S, Ahmad F, Dar SA, et al.: Developments in strategies for quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog 121: 293-302, 2018. https://doi.org/10.1016/j.micpath.2018.05.046 
  83. Chung WO, Park Y, Lamont RJ, McNab R, Barbieri B, Demuth DR: Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol 183: 3903-3909, 2001. https://doi.org/10.1128/JB.183.13.3903-3909.2001 
  84. Frias J, Olle E, Alsina M: Periodontal pathogens produce quorum sensing signal molecules. Infect Immun 69: 3431-3434, 2001. https://doi.org/10.1128/IAI.69.5.3431-3434.2001 
  85. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI: Bacterial interactions and successions during plaque development. Periodontol 2000 42: 47-79, 2006. https://doi.org/10.1111/j.1600-0757.2006.00187.x 
  86. Jang YJ, Choi YJ, Lee SH, Jun HK, Choi BK: Autoinducer 2 of Fusobacterium nucleatum as a target molecule to inhibit biofilm formation of periodontopathogens. Arch Oral Biol 58: 17-27, 2013. https://doi.org/10.1016/j.archoralbio.2012.04.016 
  87. Senadheera D, Cvitkovitch DG: Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol 631: 178-188, 2008. https://doi.org/10.1007/978-0-387-78885-2_12 
  88. Shao H, Lamont RJ, Demuth DR: Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect Immun 75: 4211-4218, 2007. https://doi.org/10.1128/IAI.00402-07 
  89. Cho YJ, Song HY, Ben Amara H, et al.: In vivo inhibition of Porphyromonas gingivalis growth and prevention of periodontitis with quorum-sensing inhibitors. J Periodontol 87: 1075-1082, 2016. https://doi.org/10.1902/jop.2016.160070 
  90. Ryu EJ, Sim J, Sim J, Lee J, Choi BK: D-galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens. J Microbiol 54: 632-637, 2016. https://doi.org/10.1007/s12275-016-6345-8 
  91. An SJ, Namkung JU, Ha KW, Jun HK, Kim HY, Choi BK: Inhibitory effect of D-arabinose on oral bacteria biofilm formation on titanium discs. Anaerobe 75: 102533, 2022. https://doi.org/10.1016/j.anaerobe.2022.102533 
  92. Park T, Im J, Kim AR, et al.: Short-chain fatty acids inhibit the biofilm formation of Streptococcus gordonii through negative regulation of competence-stimulating peptide signaling pathway. J Microbiol 59: 1142-1149, 2021. https://doi.org/10.1007/s12275-021-1576-8 
  93. Park JS, Ryu EJ, Li L, Choi BK, Kim BM: New bicyclic brominated furanones as potent autoinducer-2 quorum-sensing inhibitors against bacterial biofilm formation. Eur J Med Chem 137: 76-87, 2017. https://doi.org/10.1016/j.ejmech.2017.05.037 
  94. Chen Y, Liu T, Wang K, et al.: Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One 11: e0153468, 2016. https://doi.org/10.1371/journal.pone.0153468 
  95. He Z, Wang Q, Hu Y, et al.: Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int J Antimicrob Agents 40: 30-35, 2012. https://doi.org/10.1016/j.ijantimicag.2012.03.016