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Background: Recent studies have elucidated the quorum-sensing mechanisms, biofilm formation, inter-pathogen interactions, 

and genes related to oral pathogens. This review aims to explore the recent expansion of drug targets against oral pathogens and 

summarize the current research on novel antibiotic substances derived from marine organisms that target oral pathogens.

Methods: A comprehensive literature review summarized the novel mechanisms pertaining to quorum-sensing signal 

transmission systems, biofilm formation, and metabolite exchange in oral pathogens. The amino acid sequences of the 16 proteins 

identified as potential drug targets were systematically classified and compared across various oral microorganisms.  

Results: Through a literature review, we identified nine studies researching quorum sensing signaling inhibitors targeting oral 

pathogens. A comparison of the amino acid sequences of 16 potential drug targets in oral microorganisms revealed significant 

differences between oral pathogens and beneficial oral symbiotic microorganisms. These findings imply that it is possible to design 

drugs that can bind more selectively to oral pathogens.  

Conclusion: By summarizing the results of recent research on the signaling mechanisms that cause pathogenicity, new drug 

targets against oral pathogens were proposed. Additionally, the current status of developing new antibiotics for oral pathogens 

using recently developed quorum sensing inhibitors and natural products derived from marine organisms was introduced. 

Consequently, marine natural products can be used to develop drugs targeting new proteins in oral pathogens.
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Introduction

1. Background

The human oral cavity contains a complex community 
of microorganisms (including oral pathogens) that exert a 
substantial influence on dental and systemic health. Various 
microbial niches appear in the tissues of the human oral 
cavity owing to factors such as nutritional content, pH, 
oxygen concentration, and metabolic properties of the mic-
robial ecosystem1-3). Biofilm formation in the oral environ-

ment is a critical mechanism for these oral pathogens. 
While biofilms naturally occur in healthy teeth, the accu-
mulation of successive dental biofilms can play a critical 
role in the development of diseases, such as dental caries, 
gingivitis, and periodontitis4,5). Furthermore, bacteria from 
dental biofilms may cause systemic diseases such as 
endocarditis, diabetes mellitus, atherosclerosis, rheumatoid 
arthritis, and orodigestive cancer through bacteremia or 
indirect manners6-10). Research on oral pathogens is im-
portant to understand their roles in various systemic diseases 
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Fig. 1. Stages of oral biofilm for-
mation and dispersion. Several oral 
pathogens use quorum-sensing sig-
naling to form biofilms. Additionally, 
direct interactions with other patho-
gens or signaling using secondary 
metabolites occur. Biofilm dispers-
ion can be largely divided into active 
dispersion by signals of the micro-
organism itself and passive disper-
sion by external physical stimulation.
EPS: extracellular polymeric subs-
tances.

and conditions. Poor oral hygiene and periodontal health 
can affect systemic health and vice versa11). Understanding 
the relationship between oral pathogens and systemic 
diseases can improve diagnosis, prevention, and treatment 
strategies. Therefore, research on oral pathogens is crucial 
to improve overall oral and systemic health outcomes.

Oral biofilms are formed in several stages and involve 
various bacteria. Saccharolytic bacteria, such as Strepto-
coccus, Lactobacillus, and Actinomyces species, are pro-
minent in the formation of dental caries by creating acids 
that erode tooth enamel1,12). Various organisms living in 
the oral cavity, including these species, are known oral 
pathogens. Proteolytic bacteria such as Prevotella and 
Porphyromonas species break down proteins into amino 
acids and further degrade these amino acids, generating 
short-chain fatty acids, ammonia, sulfur compounds, and 
indole/skatole, which serve as virulent factors contributing 
to periodontitis and oral malodor13,14). Porphyromonas 
gingivalis is a common cause of chronic periodontitis and 
an indicator of disease progression15,16). It affects the pro-
liferation of oral tumor cells and modifies epidermal 
growth factor receptor signaling, which is relevant to the 
development of oral tumors and colorectal cancer. They 
play key roles in the formation of multispecies dental 
biofilms17). Gram-negative bacteria such as Pseudomonas 
aeruginosa and Klebsiella pneumoniae are the main cause 
of infections, ranging from pneumonia to bloodstream 
infections, and their presence in the oral cavity can lead to 

systemic and opportunistic infections (Fig. 1)18).
Additionally, other species and types of oral pathogens 

live in the human oral cavity. For example, Candida 
albicans is a fungus that contributes to oral infections, 
particularly in immunocompromised individuals19,20). Aggre-
gatibacter actinomycetemcomitans, Filifactor alocis, Sta-
phylococcus aureus, Aspergillus fumigatus, Mucor, Cry-
ptococcus, Corynebacterium, Haemophilus influenzae, 
Haemophilus parainfluenzae, and Neisseria species are 
well-known oral pathogens21-24).

These bacteria rapidly colonize various surfaces within 
the oral tissue despite the turbulent environment within the 
human oral cavity. Colonization begins within several 
minutes and extensive microbial deposition occurs within 
a few hours. Biofilm development in the oral cavity can be 
divided into adhesion/coaggregation, microbial interactions, 
and extracellular matrix formation stages25,26). Streptococci 
participated in all stages, and a wide variety of bacteria 
participated in each stage (Table 1). Oral streptococci 
express numerous adhesins on their cell surface. Adhesins 
are key elements that allow streptococci to anchor to 
human tissues and other bacterial cells27). Oral streptococci, 
including commensal, cariogenic, and extraoral streptococci, 
express a family of proteins called antigens I/II (AgI/II). 
AgI/II allows streptococci to attach to enamel surfaces and 
aggregate with other bacteria by binding to the salivary 
agglutinin glycoprotein gp34028,29). 
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Table 1. Representative Examples of Participating Bacteria throughout the Oral Biofilm Formation Stages

Adhesion/coaggregation Interaction Matrix production
Pathogen Description Pathogen Description Pathogen Description

Streptococci AgI/II proteins 
result in 
aggregation

Early colonizing 
streptococci

Produce acids 
from sugars

Streptococcus 
mutans

Produce insoluble 
glucans, an important 
component of biofilm 
matrix

Porphyromonas 
gingivalis

Bindto pre-existing 
Streptococcus 
gordonii biofilm

Aggregatibacter 
actinomycetemcomitans

Utilize lactate 
produced 
by streptococci

Enterococcus 
faecalis

Forma structural biofilm 
scaffold with proteins 
and extracellular DNA

Fusobacterium 
nucleatum

Coaggregate 
with almost all 
other oral bacteria

Veillonella sp. Participate in 
numerous 
mutualistic 
interactions

Neisseria 
meningitides

2. Objectives

This review introduces the recent studies on the various 
pathogenic mechanisms of oral pathogens. Specifically, we 
describe the direct interactions between pathogens, quorum 
sensing signaling, and metabolite exchange that occur during 
biofilm formation by oral pathogens. We also summarized 
the virulence factors involved in biofilm formation by oral 
pathogens. These newly identified mechanisms of patho-
genic virulence factors may provide new drug targets for 
the development of novel antibiotics against oral pathogens. 
Furthermore, we suggested methods for selective drug 
development against specific oral pathogens through a 
sequence comparison of drug target proteins that have not 
been previously introduced. Additionally, we present the 
possibility of discovering new antibacterial substances in 
marine organisms based on recent successful findings.

Materials and Methods

1. Literature and protein sequence database 

search

A literature search was performed using PubMed (https:// 
pubmed.ncbi.nlm.nih.gov/) and Google Scholar (https:// 
scholar.google.com/) databases. The Basic Local Align-
ment Search Tool (BLAST) was used to identify homolo-
gous protein sequences in other species. 

2. Protein sequence identity and similarity 

calculation

Sixteen well-known drug target proteins for general 

pathogens were selected through a literature review using 
PubMed and Google Scholar. The sequences of these 16 
proteins from the pathogen P. gingivalis were retrieved 
from the UniProt Knowledge Base (UniProtKB) protein 
sequence database. Using the 16 protein sequences from P. 
gingivalis as queries, homologous proteins from other oral 
microorganisms were searched in the UniProtKB protein 
sequence database. The search results were compiled by 
one researcher and subsequently reviewed by two authors 
who were not involved in the initial search process. Pro-
tein sequence alignments and analyses were performed 
using the web-based multiple alignment program 
ClustalW (https://www. genome. jp/tools-bin/clustalW).

Results and Discussion

1. The demand to develop new antibiotics

Antibiotics prescribed for oral health are commonly 
used in dentistry for periodontal infections, non-periodontal 
infections, localized infections, focal infections, and as 
preventive measures during dental procedures. Antibiotic 
treatment involves direct application at the site of infection 
or systemic administration via ingestion. It is crucial to 
choose an appropriate approach by targeting antibiotic the-
rapy specifically for oral pathogens, while preserving bene-
ficial oral commensal bacteria, thereby inhibiting the 
growth of oral pathogens30,31). 

Overuse and misuse of antibiotics in odontogenic infec-
tions can promote the colonization of resistant bacteria, 
and antibiotic-resistant gene-containing plasmids can spread 
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Table 2. Antimicrobial Substances against Oral Pathogens Derived from Marine Organisms

Natural compound Source Description Reference
Fucoidan Fucus vesiculosus, Cladosiphon 

okamuranus, Laminaria japonica, and 
many other brown macroalgal species

ㆍLong chain sulfated and fucose-rich polysaccharide. 
ㆍBroad pharmacological effects include antibacterial, 

antiviral, and anti-inflammatory effects.
ㆍAntimicrobial activity against Candida albicans, 

Streptococcus mutans, and Porphyromonas 
gingivalis.

43∼46

Halistanol sulfate Halichondria moori from marine sponge ㆍInhibition of biofilm formation and reduction of 
biofilm-associated gene expression in S. mutans 
and Streptococcus sanguinis.

47, 48

Mayamycin Streptomyces sp. HB202 bacteria isolated 
from marine sponge 

ㆍInhibitory effect against Pseudomonas aeruginosa 
and methicillin-resistant Staphylococcus aureus. 

49

Salinisporamycin Salinispora sp. marine bacteria from 
bottom sediments

ㆍInhibition of adenocarcinoma cell growth.
ㆍAntimicrobial activity against S. aureus 

and C. albicans.

50

Fridamycin A/D Streptomyces marine bacteria from bottom 
sediments

ㆍAntibacterial activity against multidrug-resistant 
S. aureus.

51

Callinectin Callinectes sapidus from blue crab ㆍAntibacterial activity against Gram-negative 
bacteria.

53

Coumarin Diverse group of algae, marine fungi,
and ascidians

ㆍInhibition of biofilm formation of P. gingivalis 
through reducing AI-2 activity.

54, 55

across a broad niche of bacteria through transmission30,31). 
The emergence of multidrug-resistant oral pathogens that 
render conventional treatments ineffective has become a 
critical global health concern since conventional treat-
ments become ineffective32). The development of novel 
antimicrobial agents is crucial owing to the increasing 
threat of multidrug-resistant oral pathogens and limited op-
tions for therapy33,34). Therefore, it is important to identify 
valuable sources of antibiotics in natural ecosystems35-37).

2. Interpreting recent studies

Marine organisms are rich sources of antibiotics. Marine 
sponges, such as those from the phylum Porifera, produce 
bioactive compounds that can be used to improve human 
health38). Natural compounds derived from marine micro-
organisms (including bacteria, fungi, actinomycetes, and 
cyanobacteria) exhibit promising antimicrobial properties 
and can act against various antibiotic-resistant pathogenic 
strains. Antibiotics produced by bacteria living in marine 
environments have also been studied; diverse metabolites 
have been isolated and their chemical structures eluci-
dated39). Actinomycetes (specifically, marine actinomycetes) 
have been identified as potential producers of novel anti-
biotics, with strains such as Streptomyces sampsonii, Strep-

tomyces halstedii, and Nocardiopsis alba showing signi-
ficant antibiotic activity against various pathogens40,41). 
Additionally, marine-derived natural products have been 
explored for their anti-biofilm activity, and 129 marine- 
derived natural products and their synthetic analogs have 
been reviewed for their effectiveness in combating biofilm 
formation (Table 2)42). 

Biologically active compounds have been identified in 
several brown algae species. Fucoidan is a long chain, 
sulfated, fucose-rich polysaccharide found in the cell walls 
of brown macroalgal species, including Fucus vesiculosus, 
Cladosiphon okamuranus, Laminaria japonica, and Undaria 
pinnatifida43). It is widely studied owing to its diverse phar-
macological effects (including antitumor effects) that pro-
mote the apoptosis of cancer cells44-46), as well as its antiviral, 
anti-inflammatory, anti-allergic, and hypotensive effects44).

Microbial symbionts in marine sponges and corals 
produce bioactive compounds with antimicrobial properties. 
Halistanol sulfate, discovered in the sponge Halichondria 
moori, exhibits antibacterial activity against Streptococcus 
mutans, which is the main etiological agent of human 
dental caries47,48). Halistanol sulfate A exhibited the strongest 
antibacterial effect against S. mutans, inhibits biofilm for-
mation in planktonic cells, and reduces the expression of 
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Table 3. Amino Acid Sequence Differences of Drug Development Target Protein in Various Oral Bacteria

Possible drug target protein in 
Porphyromonas gingivalis 

(UniProtKB code) 

Sequence identity/homology (UniProtKB code) with homologous protein
Streptococcus 

mutans
Fusobacterium 

nucleatum
Enterococcus 

faecalis
Neisseria 

meningitidis
Streptococcus 

salivarius
Methionine-tRNA ligase 

(Q7MXK7)
35.29%/53.07%
(A0A829BNI5)

34.14%/52.15%
(Q8RE57)

34.13%/52.38%
(Q837B3)

36.38%/55.29%
(Q9K1Q0)

37.32%/53.09%
(J7SIB3)

Peptide deformylase 
(Q7MT07)

29.36%/45.96%
(Q8DWC2)

39.41%/60.10%
(Q8REF0)

30.80%/44.64%
(Q82ZJ0)

37.13%/53.96%
(P63916)

28.28%/43.85%
(J7TGU5)

Methionine Aminopeptidase 
(A0A134DR99)

38.89%/54.25%
(Q8DT38)

47.08%/66.42%
(A0A0X3Y2E4)

41.94%/58.78%
(A0A3N3SAK1)

43.17%/61.15%
(A0A0H5QGA8)

37.99%/54.22%
(J7TU94)

Beta-ketoacyl-[acyl-carrier-
protein] synthase III 
(Q7MAV3)

38.53%/60.91%
(Q8DSN2)

43.63%/59.49%
(Q8RGX7)

38.04%/54.08%
(Q820T1)

39.83%/57.66%
(Q9JXR6)

40.51%/59.21%
(J7SIA1)

DNA gyrase subunit A
(Q8L3L7)

47.77%/67.08%
(A0A0E3VYF0)

47.53%/67.15%
(A0A0M4SCH3)

49.72%/69.97%
(A0A1J6YID4)

44.82%/62.87%
(A0A076U4V3)

48.54%/68.61%
(A0A6N2YRL6)

DNA gyrase subunit B
(A0A134DMA2)

55.57%/71.92%
(A0A829BP53)

53.77%/70.61%
(A0A101K4X9)

56.05%/70.85%
(Q839Z1)

40.93%/55.13%
(A0A0H5QAZ0)

56.33%/72.58%
(A0A7L6WLW5)

DNA topoisomerase IV 
subunit A 
(A0A2D2N546)

27.48%/43.98%
(A0A829BMX9)

N/A 28.63%/45.78%
(Q93HU6)

28.35%/43.60%
(A0A0H5QAL8)

29.65%/45.79%
(J7TQR1)

DnaK (P0C937) 60.73%/72.36%
(O06942)

60.00%/71.82%
(Q8RH05)

60.78%/73.45%
(Q835R7)

60.39%/73.69%
(Q9K0N4)

61.40%/73.10%
(J7TPQ1)

Peptidoglycan 
glycosyltransferase 
(A0A2D2NAU4)

27.65%/40.93%
(A0A829BJP3)

26.50%/44.43%
(A0A133P5Z8)

26.62%/40.80%
(Q9EXN1)

29.61%/44.90%
(A9M1V1)

27.81%/40.92%
(J7TPX1)

1-Deoxy-D-xylulose-5
-phosphate reductoisomerase
(Q7MUW3)

N/A 42.11%/62.44%
(Q8R622)

N/A 45.15%/63.35%
(Q9K1G8)

N/A

Superoxide dismutase 
[Mn/Fe] 
(P19665)

41.59%/54.67%
(P09738)

N/A 45.41%/57.49%
(Q838I4)

N/A 41.63%/54.55%
(A0A0A1DUC0)

Aspartate semialdehyde 
dehydrogenase 
(A0A2D2N2E1)

46.60%/61.52%
(P10539)

30.81%/46.70%
(A0A3P1VYK2)

45.95%/62.16%
(A0A2S7M0C8)

32.93%/49.39%
(P30903)

44.33%/61.34%
(J7TZ02)

Methylenetetrahydrofolate 
dehydrogenase/cyclohydrolase 
(Q7MVE9)

47.40%/64.29%
(Q8DVC1)

40.51%/61.41%
(Q8RDM4)

46.36%/68.21%
(Q836W7)

47.27%/63.02%
(P0C277)

45.37%/63.58%
(J7TX79)

Riboflavin biosynthesis protein 
(Q7MWK9)

N/A 53.10%/68.57%
(A0A101K6I4)

51.43%/66.90%
(R3HR06)

N/A N/A

Lumazine synthase 
(Q7MUR5)

N/A 41.32%/60.48%
(Q8RIR4)

34.91%/57.99%
(R3K342)

37.02%/51.93%
(P66037)

N/A

FAD synthetase 
(A0A2D2N1C2)

36.08%/54.26%
(A0A829BS71)

33.24%/52.91%
(A0A0M4SS57)

33.71%/52.81%
(A0A3N3ZCW2)

36.52%/54.78%
(A0A2X1VAD0)

35.90%/54.70%
(A0A428B2K5)

N/A means the sequence information is not available in the database.

biofilm-related genes (gtfB, gtfC, and gbpB)47,48). Halistanol 
sulfate A also inhibits Streptococcus sanguinis at higher 
concentrations47). Mayamycin is an aromatic polyketide 
identified in a symbiotic Streptomyces sp. strain isolated 
from the marine sponge Halichondria panicea. It has shown 
significant pharmacological activities, including cytotoxicity 
against human cancer cell lines and antimicrobial activity 

against various bacteria such as P. aeruginosa and methi-
cillin-resistant S. aureus49). Marine sediment bacteria pro-
duce diverse compounds with potential antibiotic properties. 
For example, salinisporamycin, a rifamycin antibiotic iso-
lated from the marine actinomycete Salinispora arenicola, 
inhibits the growth of human lung adenocarcinoma cells 
and exhibits antimicrobial activity against P. aeruginosa 
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Table 4. Several Oral Pathogens have Quorum Sensing Systems

Oral pathogen Quorum sensing molecules Quorum sensing type Reference
Porphyromonas gingivalis Autoinducer-2 (AI-2) LuxS-encoded autoinducer (AI)-2 quorum sensing 83∼85
Prevotella intermedia Autoinducer-2 (AI-2) LuxS-encoded autoinducer (AI)-2 quorum sensing 84, 85
Fusobacterium nucleatum Autoinducer-2 (AI-2) LuxS-encoded autoinducer (AI)-2 quorum sensing 85, 86
Streptococcus mutans Autoinducer peptides (AIPs)

Competence-stimulating 
peptide (CSP)

ComD/ComE two-component-type quorum sensing 87

Aggregatibacter 
actinomycetemcomitans

Autoinducer-2 (AI-2) LuxS-encoded autoinducer (AI)-2 quorum sensing 88

Table 5. Summary of Quorum Sensing Inhibitors Targeting Oral Pathogens

Quorum sensing inhibitor Inhibition target Mechanism of action Reference
Coumarin Porphyromonas gingivalis Inhibiting AI-2 activity 53, 54
Furanone compound
   D-Ribose Fusobacterium nucleatum

P. gingivalis
Tannerella forsythia

Inhibiting AI-2 activity and reducing biofilm 
formation

86, 89

   D-Galactose F. nucleatum
Vibrio harveyi
P. gingivalis
T. forsythia

Preventing biofilm formation 90

   D-Arabinose F. nucleatum
P. gingivalis
Streptococcus oralis

Inhibiting AI-2 activity 91

Short-chain fattyacids
(NaA, NaP, NaB, etc.)

Streptococcus gordonii Suppressing S. gordonii biofilm formation 92

Bicyclic brominated furanones P. gingivalis
F. nucleatum
T. forsythia

Inhibiting AI-2 activity without cytotoxicity 
or inflammatory response

93

Baicalein Staphylococcus aureus
Streptococcus mutans

Inhibiting biofilm formation and destruction 94

Furanone C-30 S. mutans Inhibiting biofilm formation in S. mutans and 
its lux S. mutant strain

95

and C. albicans50). Similarly, Fridamycin A and Fridamycin 
D, identified in a Streptomyces sp. strain from the marine 
sediment of the Philippine archipelago, exhibit antibacterial 
activity against multidrug-resistant S. aureus51). Additio-
nally, a Pseudomonas sp. associated with the soft coral 
Sinularia polydactyla shows antibacterial activity against 
Streptococcus equi subspecies, although the specific anti-
bacterial substance remains unidentified52).

Potential antibiotic candidates are found not only in 
bacteria but also in various marine organisms. For example, 
blue crabs (Callinectes sapidus) synthesize the antimicrobial 
peptide called callinectin in their hemolymph, which is 
effective against gram-negative bacteria53). Coumarins, iso-
lated from a diverse group of marine organisms, including 

algae, fungi, and ascidians, also show antimicrobial acti-
vity54). Notably, coumarin has the potential to act as a 
quorum-sensing inhibitor by inhibiting the AI-2 activity of 
P. gingivalis55). Oroidin is a secondary metabolite of the 
marine sponge Agelas conifera that significantly reduces 
P. gingivalis biovolume56). These compounds reduced the 
expression of mfa1 and fimA in P. gingivalis, which en-
code the minor and major fimbrial subunits, respectively. 
These fimbrial adhesins are necessary for the co-adhesion 
between P. gingivalis and Streptococcus gordonii. These 
results demonstrate the potential of a small molecule 
inhibitor-based approach for preventing diseases associ-
ated with P. gingivalis56). Neoechinulin B is a natural 
marine product and a promising drug candidate for allevia-
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ting mortality and morbidity rates caused by drug-resistant 
infections57). Aurantoside K is a tetramic acid glycoside 
isolated from the Fijian marine sponge Melophlus that 
shows potent antifungal activity against wild-type and 
amphotericin-resistant C. albicans58). 

3. Comparison with previous studies: new 

drug targets against oral pathogenic 

microorganisms

Recent studies have shown that oral microorganisms 
coexist and balance the oral environment of a healthy 
person. When the oral environment deteriorates, the com-
position and ratio of oral microorganisms change, and 
pathogenic microorganisms increase59-61). Many oral patho-
genic microorganisms are anaerobic, whereas commensal 
non-pathogenic oral microorganisms are often aerobic bac-
teria62,63). An attempt has been made to develop a drug 
specific to oral pathogens using the difference in energy 
metabolism pathways between aerobic and anaerobic mic-
roorganisms by developing an inhibitor of a characteristic 
enzyme only present in anaerobic microorganisms. For 
example, treatment with amixicile (an inhibitor targeting 
pyruvate:ferredoxin oxidoreductase) inhibits oral pathogen 
growth, whereas aerobic oral bacteria are unaffected64,65). 
Additionally, it is possible to develop a specific drug tar-
geting oral pathogenic microorganisms because the amino 
acid sequences of drug target proteins differ between oral 
pathogenic and non-pathogenic oral microorganisms66,67). 
For example, there is a large sequence difference between 
peptide deformylases in P. gingivalis and Streptococcus 
salivarius, with 28.3% sequence identity and 43.9% sequ-
ence homology (Table 3). Thus, it is possible to develop a 
peptide deformylase inhibitor that can inhibit the growth of 
P. gingivalis without inhibiting the growth of S. salivarius68).

When the number of pathogenic oral microorganisms 
increases, the expression of virulence factors and biofilm 
production is promoted through quorum sensing69-71). Recent 
studies have revealed the detailed mechanisms and func-
tions of the genes involved in sensing oral pathogens. 
Biofilm formation induces antibiotic resistance in oral 
pathogenic microorganisms by inhibiting antibiotic pene-
tration of antibiotics72,73). During biofilm formation, oral 
microorganisms are directly connected to each other through 

adhesion proteins and exchange various metabolites for 
signaling74-76). Fusobacterium nucleatum serves as a 
bridge between the early colonized microorganisms of the 
teeth and pathogenic microorganisms77,78). Following the 
discovery of quorum-sensing mechanisms and biofilm for-
mation by oral pathogenic microorganisms, it is possible 
to develop antibacterial substances that only inhibit the 
growth of pathogens while preserving beneficial oral bac-
teria79,80). Substances that inhibit quorum sensing, biofilm 
formation, metabolite signaling, and direct interactions 
with oral pathogenic microorganisms are considered new 
drug candidates against oral pathogenic microorganisms 
(Table 4, 5)53,54,81-95). 

4. Conclusion and suggestion

Rapid developments in molecular biology, genome ana-
lysis, and metabolite analysis technologies have enabled 
the identification of novel oral disease mechanisms in oral 
pathogens. Various signaling molecules and interacting 
proteins related to biofilm formation by certain oral patho-
gens have been identified. Proteins involved in the pro-
duction of signaling molecules and signal transduction 
during biofilm formation can serve as new drug targets 
against oral pathogens. If drugs are developed to target 
proteins unique to oral pathogens, it would be possible to 
selectively eliminate oral pathogens, while preserving bene-
ficial oral commensal microorganisms. Establishing a rapid 
and accurate activity measurement method for each new 
drug candidate target protein is also necessary. In conclu-
sion, it is important to study the various mechanisms of 
action of oral pathogens and identify new target proteins to 
develop novel antibiotics against oral pathogens. In this 
review, we investigated six successful cases of confirmed 
antibacterial activity against oral pathogens using marine 
natural products. Most studies on the antibacterial activity 
of natural marine products have been conducted on gene-
ral rather than oral pathogens. Therefore, it is necessary to 
investigate the application of substances with known anti-
bacterial activities against oral pathogens. Moreover, it is 
important to screen for novel antibiotics in marine organisms 
to address the antibiotic resistance issues associated with 
oral diseases.
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