• Title/Summary/Keyword: marine paint and coatings

Search Result 11, Processing Time 0.021 seconds

A Study on Impact of Economic Cycles in Shipbuilding on Managerial Performance of Marine Paint and Coatings Firms (조선산업 경기가 선박용 도료업체 경영성과에 미치는 영향에 대한 연구)

  • Jin-Kook Kim;Chi-Yeol Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.49-54
    • /
    • 2024
  • This paper investigated the impact of economic cycles in the shipbuilding industry on managerial performance of marine paint and coatings firms. As part of the upstream to ship construction, the marine equipment industry plays a critical role in determining the competitiveness of the shipbuilding industry. Despite a close interaction between the two sectors, the majority of research on the marine equipment industry has highlighted securing competitiveness edge and developing advanced technologies, paying little academic attention to the relationship between shipbuilding and managerial performance. In this regard, this paper examined how economic cycles in shipbuilding affected growth and profitability of marine paint and coatings firms. To this end, managerial performances of six marine paint and coatings firms for the period of 2003-2022 were analyzed in panel regressions. Results indicated that the shipbuilding economic cycle proxied by delivery amounts of Korean shipyards was positively associated with growth and profitability of marine paint and coatings firms. However, there was divergence in statistical significance by shipbuilding indicators. While coefficients of compensated gross tonnage, gross tonnage, and monetary amount were statistically significant, that of deadweight tonnage was not. Findings of this study imply that managerial performances of marine paint and coatings firms are affected by the amount of value added from the shipbuilding industry rather than its absolute size.

Experimental Study of Ice Friction and Abrasion Test Methods for Polar Paint (극지용 도료의 빙마찰 및 빙마모 시험기법 연구)

  • Cho, Seong-Rak;Oh, Eun-Jin;Kim, Cheol-Hee;Lee, Jae-Man;Kim, Sung-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.532-540
    • /
    • 2019
  • This study describes a test method for evaluating the ice friction and abrasion performance of polar coatings. The evaluation methods of physical properties of general coatings for ocean-going vessels and polar coatings for ice-going vessels were investigated and their limitations were analyzed. We have also reviewed previous researches related to the development of polar paints and confirmed the necessity of developing test techniques. A flat steel plate was coated with several types of commercial coating, and cold model ice was used to cause ice friction and abrasion events between coated surface and ice. For evaluation of ice friction and abrasion performances, test procedures such as measurement of coating surface roughness, measurement of frictional force using model ice, implementation of ice abrasion and drying of coating surface were developed. The friction and abrasion characteristics of each coating are analyzed and summarized through the change of friction force and roughness data according to the progress of ice abrasion.

The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint (중방식 도료의 내식성에 미치는 첨가제의 영향)

  • Moon, Kyung-Man;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Hyun-Myung;Lee, In-Won;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.65-70
    • /
    • 2007
  • There are many kinds of protection methods for marine structures, with varyingeconomical and environmental advantages. The coating protection method is being widely used in both continental and marine structures. In this study, by adding some additives, such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect on the corrosion resistance was investigated throughan electrochemical method. The additive of Zn(20)+CB(10) showed the lowest passivity current density. Polarization resistance in both cyclic voltammogram and impedance measurement of an additive of Zn(20)+CB(10) was also the largest value, compared to other additives. Furthermore, rusting and bubbling was not observed on the surface of the test specimen with the additive of Zn(20)+CB(10), compared to other specimens. It is suggested that the corrosion resistance of the anti-corrosive paint can be improved by using some additives.

Development of paint area estimation software for ship compartments and structures

  • Cho, Doo-Yeoun;Swan, Sam;Kim, Dave;Cha, Ju-Hwan;Ruy, Won-Sun;Choi, Hyung-Soon;Kim, Tae-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.198-208
    • /
    • 2016
  • The painting process of large ships is an intense manual operation that typically comprises 9-12% of the total shipbuilding cost. Accordingly, shipbuilders need to estimate the required amount of anti-corrosive coatings and painting resources for inventory and cost control. This study aims to develop a software system which enables the shipbuilders to estimate paint area using existing 3D CAD ship structural models. The geometric information of the ships structure are extracted from the existing shipbuilding CAD/CAM system and used to create painting zones. After specifying the painting zones, users can generate the paint faces by clipping structural parts inside each zone. Finally, the paint resources may be obtained from the product of the paint areas and required paint thickness. Implementing the developed software system to real shipbuilders' operations has contributed to improved productivity, faster resource estimation, better accuracy, and fewer coating defects over their conventional manual calculation methods for painting resource estimation.

The Study on Economic Evaluation of Anti Fouling Coatings based on Ship's Speed Loss in Accordance with ISO 19030 Standard (ISO 19030에 따른 선박의 속력 손실을 고려한 방오도료의 경제성 평가)

  • Kim, Jae Hyeok;Kim, Yong Woon;Lee, Dong Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The purpose of this paper is to establish the basic procedure and method for selection of preferred anti-fouling paint considering economic analysis according to ship's speed loss based on ISO 19030 that has been published in 2016 to prescribe practical methods for measuring changes in ship specific hull and propeller performance. In this study, six (6) anti-fouling paint products have been assumed for alternatives with each target maximum average speed loss and carried out comparison of the alternatives and sensitivity analysis in assumed conditions for selection of the preferred alternative.

The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint (중방식 도료의 내식성에 미치는 첨가제의 영향)

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Hyun-Myung;Lee, In-Won;Jeon, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.173-176
    • /
    • 2006
  • There are many kinds of protection methods for marine structures by using and environmental condition. Coating protection method, one of these methods is being widely adopted to both all ground and marine structures. In this study, by adding some additives such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect to promote corrosion resistance was investigated with electrochemical method. Corrosion potentials with additives shifted to negative direction than no additive. However passivity current density increased than no additive except for Zn(20)+CB(10), especially, additive of Zn(20)+CB(10) showed the smallest passivity current density. Polarization resistance of Zn(20)+CB(10) by both cyclic voltammogram and impedance measurement was the largest value than other additives. And also surface phenomenon by adding Zn(20)+CB(10) was observed a good add condition not showing bubbling than other additives.

  • PDF

Full Scale Frictional Resistance Reduction Effect of a Low Frictional Marine Anti-fouling Paint based on a Similarity Scaling Method (상사축척법에 기반한 저마찰 선박 방오도료의 실선 마찰저항 저감성능 추정)

  • Yang, Jeong Woo;Park, Hyun;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • In this study, a series of full-scale extrapolation procedures based on the Granville's similarity scaling method, which was employed by Schultz (2007), is modified and then applied to compare the resistance performance between two different anti-fouling coatings. As an analysis example, the low frictional AF coating based on a novel skin-friction reducing polymer named FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer), which had been invented by the present author, is employed. The low frictional coating, which gives 25.4% skin frictional reduction in lab test, is estimated to give 18.2% total resistance reduction for a 176k DWT bulk carrier.

Effect of flow velocity on corrosion rate and corrosion protection current of marine material (해양 금속재료의 부식속도와 방식전류에 미치는 유속의 영향)

  • Lee, Seong Jong;Han, Min Su;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.226-231
    • /
    • 2015
  • In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

A New Protection Strategy of Impressed Current Cathodic Protection for Ship

  • Oh, Jin-Seok;Kim, Jong-Do
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.592-596
    • /
    • 2004
  • Corrosion is never avoided in the use of materials with various environments. The underwater hull is normally protected against rusting by several coatings of anti-corrosive paint. The purpose of ICCP(Impressed Current Cathodic protection) system is to eliminate the rusting or corrosion, which occurs on metal immersed in seawater. The anode of ICCP system is controlled by an external DC source with converter. The function of anode is to conduct the protective current into seawater. The proposed algorithm includes the harmonic suppression control strategy and the optimum protection strategy and has tried to test the requirement current density for protection, the influence of voltage, the protection potential. This paper was studied the variation of potential and current density with environment factors, time and velocity, and the experimental results will be explained.

Development of New Cavitation Erosion Test Method for Analyzing the Durability of Erosion Resistance Paint (내침식페인트 성능 판별에 적합한 새로운 캐비테이션 침식시험기법 개발)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Kim, Ki-Sup;Kim, Tae-Gyu;Kim, Kyung-Rae;Jang, Young-Hun;Lee, Sang-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.132-140
    • /
    • 2010
  • The very erosive cavitation is simulated by an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI. The inclined shaft for propeller makes strong cavitaion, which occurs around the root of a propeller blade. The cavitation begins at the leading edge of the propeller and contracted toward the trailing edge through the reentrant jet action. The cavity focused on the region near the trailing edge collapsed over the blade surface. As the impact pressure by the cavitation collapsing is too strong, it can damage the blade surface in the form of pit. This cavitation impacts created by the collapsing process are similar to the full-scale ones and are different from those by other erosion test methods. The newly developed cavitation erosion test method can be applied to evaluate the materials such as metals, ceramics and coatings in terms of cavitation resistance.