• Title/Summary/Keyword: marine organisms

Search Result 642, Processing Time 0.047 seconds

Effects of Clove Oil and Lidocaine-HCl Anesthesia on Water Parameter during Simulated Transportation in the Marine Medaka, Oryzias dancena

  • Park, In-Seok;Gil, Hyun Woo;Lee, Tae Ho;Nam, Yoon Kwon;Lim, Sang Gu;Kim, Dong Soo
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.19-33
    • /
    • 2017
  • Optimum concentrations of anesthetic clove oil and anesthetic lidocaine-HCl were determined for a species of adult marine medaka, Oryzias dancena, over a range of salinity conditions, and investigated in a transport simulation experiment by analyzing various water and physiological parameters. Research indicated that the higher the concentration of anesthetic at each salinity, the shorter the anesthesia time at each salinity. At each concentration, fish were anesthetized slower at water salinities over 10 ppt (P<0.05). Anesthesia time at 10 ppt was faster than any other salinity. In 10 ppt salinity, the dissolved oxygen (DO) concentrations and respiratory frequencies of the clove-oil-administered groups decreased until 48 hours (P<0.05), whereas the $NH_4{^+}$ and $CO_2$ concentrations increased until 48 hours (P<0.05). In same period, the DO, $NH_4{^+}$, and $CO_2$ concentrations and respiratory frequencies all decreased as the clove oil concentration increased (P<0.05). The trends in the DO, $NH_4{^+}$, and $CO_2$ concentrations and respiratory frequencies in the lidocaine-HCl-administered groups were similar to those in the clove-oil-administered groups. In conclusion, clove oil and lidocaine-HCl are effective anesthetics, improving the transportation of the marine medaka. The results from this study will contribute to safe laboratory handling of the marine medaka, which are commonly required by many research studies and experiments.

Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities

  • Asif, Mohammad
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.22.1-22.19
    • /
    • 2016
  • The biologically active compounds derived from different natural organisms such as animals, plants, and microorganisms like algae, fungi, bacteria and merine organisms. These natural compounds possess diverse biological activities like anthelmintic, antibacterial, antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral activities. These biological active compounds were acted by variety of molecular targets and thus may potentially contribute to several pharmacological classes. The synthesis of natural products and their analogues provides effect of structural modifications on the parent compounds which may be useful in the discovery of potential new drug molecules with different biological activities. Natural organisms have developed complex chemical defense systems by repelling or killing predators, such as insects, microorganisms, animals etc. These defense systems have the ability to produce large numbers of diverse compounds which can be used as new drugs. Thus, research on natural products for novel therapeutic agents with broad spectrum activities and will continue to provide important new drug molecules.

Benthic Organisms and Environmental Variability in Antarctica: Responses to Seasonal, Decadal and Long-term Change

  • Clarke, Andrew
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.433-440
    • /
    • 2001
  • Marine organisms in Antarctica live in an environment which exhibits variability in physical processes over a wide range of temporal scales, from seconds to millennia. This time scale tends to be correlated with the spatial scale over which a given process operates, though this relationship is influenced by biology. The way organisms respond to variability in the physical environment depends on the time-scale of that variability in relation to life-span. Short-term variations are perceived largely as noise and probably have little direct impact on ecology. Of much greater importance to organisms in Antarctica are seasonal and decadal variations. Although seasonality has long been recognised as a key feature of polar environments, the realization that decadal scale variability is important is relatively recent. Long-term change has always been a feature of polar environments and may be a key factor in the evolution of the communities we see today.

  • PDF

Food Organisms of Juveniles of Chasmichthys dolichognaths Inhabited at Intertidal Zone of the Western Coast of Korea

  • Kim, Jong-Yeon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.565-566
    • /
    • 2001
  • To investigate the food organisms of the Chasmichthys dolichognathus during the juveniles stage, the stomach contents of fish, captured in the intertidal zone of Chungchongnam-do Sochon-gun Su-myon Dodun-ri between on early June from end of May 1998, were observed. Total length of the juveniles of C. dolichognathus was 6.5mm ∼10.0mm size, and the participation rate of feeding was 67.7%. Main food organisms were such as copepods, amphipods, shrimp larvae, polychaete larvae, and these occupied more than dry weight 2%. Copepods among them dominated the most quantitys by avergage 65.5%, and next, food organismsms appeared much by order of polychaete larvae and shrimp larvae etc. Therefore, most important food organisms of juvenile stage of C. dolichognathus were copepods, polychaete larvae, shrimp larvae etc.

  • PDF

Acute Toxicity Assessment of New Algicide, Thiazolidinedione Derivative (TD53) to Marine Ecosystem (신규 살조물질인 Thiazolidinedione 유도체 (TD53)의 해양생태계에 대한 급성독성평가)

  • Yim, Eun-Chae;Shin, Jun-Jae;Park, In-Taek;Han, Hyo-Kyung;Kim, Si-Wouk;Cho, Hoon;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • In order to perform an acute toxicity assessment of a new algicide, thiazolidinedione derivative (TD53) with enhanced solubility and lower toxicity to marine ecosystem, representative 3 organisms: plant plankton (Skeletonema costatum), animal plankton (Daphnia magna), fish (Paralichthys olivaceus) related in the food chain of marine ecosystem according to OECD standard methods were employed in the exposure experiment. The exposure assessment showed that $EC_50$ of S. costatum in 96-hour, $EC_50$ of D. magna in 48-hour and $LC_50$ of P. olivaceus in 72-hour for TD53 were $1.53\;{\mu}M$, $0.61\;{\mu}M$ and $2.14\;{\mu}M$ respectively. NOEC (No Observed Effect Concentration) and PNEC (Predicted No Effect Concentration) were calculated to be $0.25\;{\mu}M$ and 6.10 nM, respectively from $EC_50$ of most sensitive strain, D. magna. Comparing with the results of toxicity assessment previously performed by using Ulva pertusa Kjellman accepted as an ISO standard method, the values of PNEC showed 3.7 times lower toxicity in case of this study employing 3 organisms, indicating that if the organisms which are more representative and sensitive in marine ecosystem are further investigated, more accurately and validly predicted toxicity of TD53 could be applied in field.

Endoplasmic Reticulum Stress Protein Expression in Selected Organs of Limanda yokohamae from Masan-Jinhae Bay, Korea

  • Ahn, Sung-Min;Kim, Soo-Woon;Jo, Qtae;Moon, Hyo-Bang;Choi, Hee-Gu;Kang, Chang-Kun;Choe, Eun-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.214-219
    • /
    • 2008
  • Changes in stress-associated biomolecules can be used as an important criterion for assessing the levels of environmental pollution because living organisms demonstrate contamination-stimulated stress responses. This study was conducted to determine the environmental status of Masan-Jinhae Bay, Korea, and its effects on marine organisms by investigating the endoplasmic reticulum (ER) dysfunction in the organs of the flat fish, Limanda yokohamae. ER dysfunction was evaluated via Western blot analysis of the ER stress proteins, immunoglobulin heavy chain binding protein (BiP) and C/EBP-homologous protein (CHOP), and the ER stress-associated protein caspase-12. The results showed that the amount of BiP and CHOP immunoreactivity in the flat fish from the bay area was much greater than that from the Gangneung, as a reference site. Similar to the ER stress proteins, the immunoreactivity of caspase-12 was also found to be elevated in the bay area when compared with that of Gangneung. These data suggest that the environmental status of Masan-Jinhae Bay induces the ER stress response, which is able to lead to phenotypic changes in marine organisms including fish.

Differentiation Effect of Marine Natural Compounds on F9 Teratocarcinoma Stem Cells (F9 기형암종 세포에 대한 해양천연물질의 분화 유도 작용)

  • Kim, Li-La;Baek, Jin-Hyen;Cho, Yong-Jin;Son, Byung-Wha;Choi, Hong-Dae;Kim, Kyu-Won
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.690-696
    • /
    • 1996
  • It has been known that many kinds of cancer are caused by continued proliferation or abnormal differentiation. Thus, recent approaches to anticancer therapy have been focused on developing drugs that induce differentiation of cancer cells to normal cells. A typical differentiation agent, all trans-retinoic acid, is unsuitable for anticancer drug because all trans-retinoic acid produces unfavorable side effects and cytotoxicity in normal cells. Therefore, we have screened some new differentiation-inducing compounds obtained from marine organisms using F9 teratocarcinoma stem cells as a model system. We observed that fatty acid. glycolipid, saponin, sphingosine and sterol compounds of marine organisms had differentiation-inducing activity in F9 cells, were determined by morphological changes and Northern blot analysis. The expression of differentiation marker genes, such as laminin B1, type IV collagen and retinoic acid receptor beta were induced by treatment with those compounds.

  • PDF