• Title/Summary/Keyword: marine microbe

Search Result 9, Processing Time 0.021 seconds

Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans and Zeolite in Artificial Sea Water (Desulfovibrio Desulfuricans과 제올라이트를 이용한 해양 내의 Zn, As 제거용 미생물 담체 개발)

  • Kim, In Hwa;Choi, Jin-Ha;Joo, Jeong Ock;Oh, Byung-Keun
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.114-118
    • /
    • 2015
  • In this study, we have developed a microbe-carrier that combined Desulfovibrio desulfuricans and zeolite for removal of Zn and As in contaminated seawater. Desulfovibrio desulfuricans, one of the sulfate-reducing bacteria (SRB) microorganism was exhibited stable growth characteristics in highly salted water and strong resistance to Zn and As contaminated seawater. Moreover, zeolites are one of the most useful carrier to remove heavy metals from wastewaters. The results showed that SRB immobilized zeolite carrier can enhance removal ratio of Zn and As. In addition, heavy metals tended to be better removed in medium at conditions of $37^{\circ}C$. In case of heavy metal concentration, they were effectively removed ranging from 50 to 100 ppm. These results show that SRB-zeolite carriers hold great potential to remove cationic heavy metal species from industrial wastewater in marine environment.

Identification of a Bioactive Compound, Violacein, from Microbulbifer sp. Isolated from a Marine Sponge Hymeniacidon sinapium on the West Coast of Korea (한국 서해안에 서식하는 주황해변해면에서 분리된 해양세균 Microbulbifer sp.으로부터 생리활성물질 비올라세인의 규명)

  • Won, Nam-Il;Lee, Ga-Eun;Ko, Keebeom;Oh, Dong-Chan;Na, Yang Ho;Park, Jin-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.124-132
    • /
    • 2017
  • Microbial secondary metabolites of marine organisms are regarded as major sources of structurally and biologically novel compounds with numerous potential uses. Sponge-microbe associations are among the most interesting sources for exploring bioactive compounds. In this study, the bacterial strain Microbulbifer sp. (127CP7-12) was isolated from the Asian marine sponge Hymeniacidon sinapium collected at an intertidal zone on the west coast of Korea. Cultured bacteria produced a violet pigment, and optimal culture conditions for violet pigment production were investigated. Maximum production of the violet pigment from the strain culture was observed under the conditions of $25^{\circ}C$, pH 6.0, and 3% NaCl. Acetone provided better extraction of the pigment from fermented broth compared with ethanol and methanol. The proposed structure of the major component in the extracted crude pigment was determined via high-performance liquid chromatography, nuclear magnetic resonance, mass spectrometry, and UV spectra analyses, which showed that the metabolite was the promising bioactive compound violacein. This study describes the examination of marine bioactive materials from microbe-engaged metabolites and the ecological implications of the sponge-microbe association in a changing ocean.

Marine Prokaryotic Diversity of the Deep Sea Waters at the Depth of 1500 m Off the Coast of the Ulleung Island in the East Sea (Korea) (울릉도 연안 수심 1500 m에 서식하는 해양미생물군집의 분포)

  • Kim, Mi-Kyung;Khang, Yongho
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.328-331
    • /
    • 2012
  • Microbial diversity in the 1500 m depth sea waters off the coast of Ulleung island of the East Sea, Korea, was investigated. Genomic DNAs were extracted directly from the marine microbes filtered through ultramembrane filters. Pyrosequencing of 16S rDNAs of these microbes resulted in 13,029 reads, of which uncultured bacteria consisted of 54.1%, alphaproteobacteria 23.4%, and gammaproteobacteria 22.3%. Other classes such as flavobacteria, actinobacteria, and epsilonproteobacteria were distributed within 0.2% of total reads. Among the cultivable bacteria, it was found that Rhodobacteraceae family of alphaproteobacteria, Alteromonadaceae, Halomonadaceae, and Piscirickettsiaceae families of gammaproteobacteria were mostly distributed in the deep-sea waters.

Comparison of Culture-dependent and DGGE based Method for the Analysis of Marine Bacterial Community (배양법과 DGGE에 의한 해양세균 군집의 비교분석)

  • Kim, Mal-Nam;Bang, Hyo-Joo
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.307-313
    • /
    • 2006
  • Seasonal variation of marine bacterial community was analyzed in the surface sea water collected from one of the stations locating at Tongyeoung coastal area, Korea. The results obtained by the culture method through identification with the VITEK Microbe ID system after pure culture in the selective medium were compared with those obtained by the DGGE based 16S rRNA PCR method. The composition of the marine bacterial community in the sea water samples harvested in September, 2004, November, 2004, January, 2005, May, 2005 and August, 2005 determined by the culture method showed 5, 5, 4, 6, and 10 strains respectively. Pseudomonas fluorescens and Acinetobacter lwoffii were detected in all seasons. The other strains were identified to be Pseudomonas stutzeri, Sphingomonas paucimobilis, Burkholderia mallei and Chryseobacterium indologenes. In contrast, the 16S rRNA PCR-DGGE method detected 10, 11, 6, 9 and 13 populations respectively in the same sea water samples and the strains were identified to be Acinetobacter lwoffii, Burkholderia mallei, Pseudomonas fluoresence, Actinobacillus ureae, Burkholderia sp., Pseudomonas stutzeri, Roseobacter sp., Vibrio parahaemolyticue, Sphingomonas paucimobilis and Rugeria algocolus. This results indicated that the DGGE based 16S rRNA PCR method was more efficient than the culture method for the grasp of the characteristics of the marine bacterial community.

Development of a Microbe-Zeolite Carrier for the Effective Elimination of Heavy Metals from Seawater

  • Kim, In Hwa;Choi, Jin-Ha;Joo, Jeong Ock;Kim, Young-Kee;Choi, Jeong-Woo;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1542-1546
    • /
    • 2015
  • The purpose of this study was to investigate the potential of zeolite-supported sulfatereducing bacteria (SRB) in enhancing the removal of Cu2+, Ni2+, and Cr6+ in contaminated seawater. Our results show that SRB-immobilized zeolite carriers can enhance the removal of heavy metals. In addition, heavy metals were generally better removed at conditions of 37°C. Cu2+, Ni2+, and Cr6+ were effectively removed by 98.2%, 90.1%, and 99.8% at 100 parts per million concentration of the heavy metals, respectively. These results indicate that SRB-zeolite carriers hold great potential for use in the removal of cationic heavy metal species from marine environment.

Purification of Hemolysin from Vibrio anguillarum Isolated from Fish (어류분리 Vibrio anguillarum 용혈소의 정제)

  • 김영희
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.598-603
    • /
    • 1998
  • A marine microbe, Vibrio anguillarum was isolated from fish and studied for its concerning pathogenic substance of hemolysin. Purification of hemolysin was achieved by the procedure of ammonium sulfate precipitation from cul-ture filtrate, DEAE-cellulose chromatography, and G-200 gel filtration with 36 fold of purification and 2.3% yield. The molecular weight of the purified hemolysin was 38,000 dalton by SDS-PAGE. The purified hemolysin was stable at pH 6-9, below 45$^{\circ}C$, and up to 1% of NaCl, respectively. $Ca^{2+}, Cu^{2+}, Zn^{2+}, Fe^{2+}$ inhibited the hemolytic activity whereas EDTA and $Mg^{2+}$ did not.

  • PDF

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms (이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.153-165
    • /
    • 2014
  • Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

Prevention of Salmonella Infection in Layer Hen Fed with Microbial Fermented Citrus Shell (산란계 감염 살모넬라균 억제에 대한 감귤박 특이 발효 미생물 제제의 사료 첨가 효과)

  • Kang, Tae-Yoon;Kang, Syung-Tae;Ihn, Young-Ho;Lee, Yang-Ho;Cho, Don-Young;Lee, Sung-Jin;Son, Won-Geun;Heo, Moon-Soo;Jeong, Dong-Kee
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.190-196
    • /
    • 2010
  • Nowadays many people use antibiotics to protect processed foods from many pathogenic bacteria. The abuse of antibiotics, however, can run the risk of creating resistant forms of bacterium. Our study focus is on making new substances that can not only replace antibiotics but also be friendly to the environment. In our experiments, we used fermented citrus fruit, soil microbes and coenzyme Q10 as probiotics and prebiotics. Chickens in the experimental group were fed these substances via oral route while those in the control group were not. After specific time periods, blood and feces samples were collected to test for Salmonella spp.. It is interesting that fermented citrus fruit was the most effective in suppressing this bacterium. Furthermore, dissection of the experiment group chickens shows that their livers did not change to a yellow color, in contrast to the control group. The results confirmed our proposal that the chickens fed with these materials can be protected from infection by Salmonella and other pathogens. These probiotics and prebiotics are highly practical because they are natural substances that can be easily recycled in the environment. It can also be used as an animal feed ingredient because of its safety.