• Title/Summary/Keyword: mapping comparison

Search Result 385, Processing Time 0.025 seconds

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

SYSTEM OF GENERALIZED SET-VALUED PARAMETRIC ORDERED VARIATIONAL INCLUSION PROBLEMS WITH OPERATOR ⊕ IN ORDERED BANACH SPACES

  • Akram, Mohammad;Dilshad, Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.103-119
    • /
    • 2021
  • In this article, we study a system of generalized set-valued parametric ordered variational inclusion problems with operator ⊕ in ordered Banach spaces. We introduce the concept of the resolvent operator associated with (α, λ)-ANODSM set-valued mapping and establish the existence theorem of solution for the system of generalized set-valued parametric ordered variational inclusion problems in ordered Banach spaces. In order to prove the existence of solution, we suggest an iterative algorithm and discuss the convergence analysis under some suitable mild conditions.

Preliminary Analysis on the Effects of Tropospheric Delay Models on Geosynchronous and Inclined Geosynchronous Orbit Satellites

  • Lee, Jinah;Park, Chandeok;Joo, Jung-Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.371-377
    • /
    • 2021
  • This research proposes the best combination of tropospheric delay models for Korean Positioning System (KPS). The overall results are based on real observation data of Japanese Quasi-Zenith satellite system (QZSS), whose constellation is similar to the proposed constellation of KPS. The tropospheric delay models are constructed as the combinations of three types of zenith path delay (ZPD) models and four types of mapping functions (MFs). Two sets of International GNSS Service (IGS) stations with the same receiver are considered. Comparison of observation residuals reveals that the ZPD models are more influential to the measurement model rather than MFs, and that the best tropospheric delay model is the combination of GPT3 with 5 degrees grid and Vienna Mapping Function 1 (VMF1). While the bias of observation residual depends on the receivers, it still remains to be further analyzed.

A Comparison of PCA, LDA, and Matching Methods for Face Recognition (얼굴인식을 위한 PCA, LDA 및 정합기법의 비교)

  • 박세제;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.372-378
    • /
    • 2003
  • Limitations on the linear discriminant analysis (LDA) for face rerognition, such as the loss of generalization and the computational infeasibility, are addressed and illustrated for a small number of samples. The principal component analysis (PCA) followed by the LDA mapping may be an alternative that ran overcome these limitations. We also show that any schemes based on either mappings or template matching are vulnerable to image variations due to rotation, translation, facial expressions, or local illumination conditions. This entails the importance of a proper preprocessing that can compensate for such variations. A simple template matching, when combined with the geometrically correlated feature-based detection as a preprocessing, is shown to outperform mapping techniques in terms of both the accuracy and the robustness to image variations.

Comparison of Genetic Algorithms and Simulated Annealing for Multiprocessor Task Allocation (멀티프로세서 태스크 할당을 위한 GA과 SA의 비교)

  • Park, Gyeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2311-2319
    • /
    • 1999
  • We present two heuristic algorithms for the task allocation problem (NP-complete problem) in parallel computing. The problem is to find an optimal mapping of multiple communicating tasks of a parallel program onto the multiple processing nodes of a distributed-memory multicomputer. The purpose of mapping these tasks into the nodes of the target architecture is the minimization of parallel execution time without sacrificing solution quality. Many heuristic approaches have been employed to obtain satisfactory mapping. Our heuristics are based on genetic algorithms and simulated annealing. We formulate an objective function as a total computational cost for a mapping configuration, and evaluate the performance of our heuristic algorithms. We compare the quality of solutions and times derived by the random, greedy, genetic, and annealing algorithms. Our experimental findings from a simulation study of the allocation algorithms are presented.

  • PDF

Comparison of Compression Schemes for Real-Time 3D Texture Mapping (실시간 3차원 텍스춰 매핑을 위한 압축기법의 성능 비교)

  • Park, Gi-Ju;Im, In-Seong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.4
    • /
    • pp.35-42
    • /
    • 2000
  • 3D texture mapping generates highly natural visual effects in which objects appear carved from lumps of materials rather than laminated with thin sheets as in 2D texture mapping. Storing 3D texture images in a table for fast mapping computations, instead of evaluating procedures on the fly, however, has been considered impractical due to the extremely high memory requirement. Recently, a practical real-time 3D texture mapping technique was proposed in [11], where they attempt to resolve the potential texture memory problem by compressing 3D textures using a wavelet-based encoding method. In this paper, we consider two other encoding schemes that could also be applied to the compression-based 3D texture mapping. In particular, we extend the vector quantization and FXT1 for 3D texture compression, and compare their performance with the wavelet-based encoding scheme.

  • PDF

Mapping Control Function for High Power Factor Cycloconverter (고역률 사이크로 컨버터의 매핑함수제어)

  • 김광태
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.237-240
    • /
    • 2000
  • A new control method using average comparison strategy have been proposed in this paper. This control method realizes sinusoidal input and output current. unity input displacement factor regardless of load power factor. Moreover compensation of the asymmetrical and harmonic containing input voltage is sautomatically realized and calculation time of control function is reduced.

  • PDF

Construction of a artificial levee line in river zones using LiDAR Data (라이다 자료를 이용한 하천지역 인공 제방선 추출)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Jo, Myung-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Comparison of Surface and Core Peptide Fraction from Apo B-100 of Human LDL (Low Density Lipoprotein)

  • Cho, Hyun-Mi;Shin, Seung-Uon;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • Apolipoprotein B-100 (apo B-100) is an important component in plasma low density lipoproteins (LDL). It function as the ligand for the LDL receptor in peripheral cells. The LDLs are removed from the circulation by both high-affinity receptor-mediated and receptor-independant pathways. LDLs are heterogeneous in their lipid content, size and density and certain LDL subspecies increase risk of atherosclerosis due to differences in the conformation of apo B in the particle. In the present study , surface and core peptide fraction of Apo B-100 have been characterized by comparing peptide-mapping and fluorescence spectroscopy. Surface fragments of apo B-100 were generated by digestion of LDL with either trypsin , pronase, or pancreatin elastase. Surface fractions were fractionated on a Sephadex G-50 column. The remaining core fragments were delipidated and redigested with the above enzymes, and the resulting core peptides were compared with surface peptides. Results from peptide-mapping by HPLC showed pronase-digestion was more extensive than trypsin -digestion to remove surface peptide fraction from LDL. Fluorescence spectra showed that core fractions contained higher amount of tryptophan than surface fractions, and it indicated that core fraction wa smore hydrophobic than surface fractions. A comparison of the behavior of the core and surface provided informations about the regions of apo B-100 involved in LDL metabolism and also about the structural features concerning the formation of atherosclerosis.

  • PDF