• Title/Summary/Keyword: manufacturing cost

Search Result 2,586, Processing Time 0.029 seconds

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

3SLS Analysis of Technology Innovation, Employment, and Corporate Performance of South Korean Manufacturing Firms: A Quantity and Quality of Employment Perspective (한국 제조기업의 기술혁신, 고용, 기업성과 간 관계에 대한 3SLS 분석: 고용의 양적·질적 특성 관점에서)

  • Dong-Geon Lim;Jin Hwa Jung
    • Journal of Technology Innovation
    • /
    • v.31 no.3
    • /
    • pp.139-169
    • /
    • 2023
  • This study analyzes the effects of firms' technology innovation(patent applications) on employment(number of workers and proportion of high-skilled workers) and corporate performance(sales per worker), while considering the two-way causal relationships between these variables. We used the three-stage least squares(3SLS) estimation to examine system of equations in which the dependent variables affect each other with a two-year lag wherever relevant, and applied it to firm-level panel data of Korean manufacturers with 100 or more workers. Our data covered the period of 2005-2017. Exogenous variables, such as firms' managerial and other characteristics, were controlled as explanatory variables. The identification variables for each equation included firms' R&D intensity, labor cost per worker(or operation of firms' own R&D center), and investment on worker training. We find that firms' patent applications increased number of workers, proportion of high-skilled workers, and sales per worker; the causal relationships in the opposite direction were also significant. Evidently, firms' technology innovation is critical to the growth and quality improvement of employment as well as sustainable corporate growth.

Electrical Properties of Two-dimensional Electron Gas at the Interface of LaAlO3/SrTiO3 by a Solution-based Process (용액 공정을 통해 제조된 LaAlO3/SrTiO3 계면에서의 이차원 전자 가스의 전기적 특성)

  • Kyunghee Ryu;Sanghyeok Ryou;Hyeonji Cho;Hyunsoo Ahn;Jong Hoon Jung;Hyungwoo Lee;Jung-Woo Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2024
  • The discovery of a two-dimensional electron gas (2DEG) at the interface of LaAlO3 (LAO) and SrTiO3 (STO) substrates has sparked significant interest, providing a foundation for cutting-edge research in electronic devices based on complex oxide heterostructures. However, conventional methods for producing LAO thin films, typically employing techniques like pulsed laser deposition (PLD) within physical vapor deposition (PVD), are associated with high costs and challenges in precisely controlling the La and Al composition within LAO. In this study, we adopted a cost-effective alternative approach-solution-based processing-to fabricate LAO thin films and investigated their electrical properties. By adjusting the concentration of the precursor solution, we varied the thickness of LAO films from 2 to 65 nm and determined the sheet resistance and carrier density for each thickness. After vacuum annealing, the sheet resistance of the conductive channel ranged from 0.015 to 0.020 Ω·s-1, indicating that electron conduction occurs not only at the LAO/STO interface but also into the STO bulk region, consistent with previous studies. These findings demonstrate the successful formation and control of 2DEG through solution-based processing, offering the potential to reduce process costs and broaden the scope of applications in electronic device manufacturing.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

Techno-economic Analysis and Environmental Impact Assessment of a Green Ammonia Synthesis Process Under Various Ammonia Liquefaction Scenarios (암모니아 액화 시나리오에 따른 그린암모니아 합성 공정의 경제성 및 환경 영향도 평가)

  • Gunyoung Kim;Yinseo Song;Boram Gu;Kiho Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • In this study, two different scenarios for ammonia liquefaction in the green ammonia manufacturing process were proposed, and the economic-feasibility and environmental impact of each scenario were analyzed. The two liquefaction processes involved gas-liquid separation before cooling at high pressure (high pressure cooling process) or after decompression without the gas-liquid separation (low pressure cooling process). The high-pressure cooling process requires higher capital costs due to the required installation of separation units and heat exchangers, but it offers relatively lower total utility costs of 91.03 $/hr and a reduced duty of 2.81 Gcal/hr. In contrast, although the low-pressure cooling process is simpler and cost-effective, it may encounter operational instability due to rapid pressure drops in the system. Environmental impact assessment revealed that the high-pressure cooling process is more environmentally friendly than the low-pressure cooling process, with an emission factor of 0.83 tCO2eq less than the low-pressure cooling process, calculated based on power usage. Consequently, the outcomes of this study provide relevant scenario and a database for green ammonia synthesis process adaptable to various process conditions.

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

A Study about Development of Environment Printing Technology and $CO_2$ (환경 인쇄 기술의 발전과 인쇄물의 $CO_2$ 발생량에 관한 연구)

  • Lee, Mun-Hag
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.89-114
    • /
    • 2012
  • For as to world, the concern about the environment problem is enhanced than any other time in the past because of being 21 century. And the environment problem is highlighted as the world-wide issue. The time of the environment problem intimidates the alive of the mankind and presence of an earth over the time. It becomes the essentiality not being selection in the personal living or the economical viewpoint now to prepare for the climatic modification. As to the company management, the green growth period which it excludes the environment management considering an environment, cannot carry on the company the continued management comes. That is, in the change center of the management paradigm, there is the environment management. Nearly, the greenhouse gas which the publication industry is the environmental toxic material like all industries is generated. The greenhouse gas is ejected in the process of running the manufacturing process and print shop of the various kinds material used as the raw material of the book. Particularly, the tree felling for getting the material of the paper is known to reach the direct influence on the global warming. This study does according to an object it considers and organizes the environment parameter based on this kind of fact as to the publication industry. And it is determined as the reference which is used as the basic materials preparing the case that carbon exhaust right transaction(CAP and TRADE) drawing are enforced in all industries and is sustainable the management of the publication industry and reduces the environmental risk among the company many risk management elements and plans and enforces the publication related policy that there is a value. In the printing publication industry, this study tried to inquire into elements discharging the environmental pollutant or the greenhouse gas. Additionally, in the printed publication production process, it tried to inquire into the effort for an environment-friendly and necessity at the printing paper and the printers ink, regarded as the element discharging the greenhouse gas all kinds of the printing materials, operation of the print shop and all kinds of the machines and recycle process, and etc. These considerations make these industrial field employees aware of the significance about a conservation and environmental protection. They try to give a help in the subsequent study producing quantitatively each environmental parameter emission of green house gas. This makes the calculation of the relative $CO_2$ output reproached ultimately possible. Meanwhile, in a sense, many research protects and improving an environment in connection with the contents of research at the printing publication industrial field is in progress. There will be the voluntary human face that it has to protect an environment but this can not do by the outside factor according to all kinds of environment related law and regulation. Anyway, because of acting on company management as the factor of oppression, the increase of this environment-related correspondence cost could know that the research that the environment loading relates with a procurement and development, environment management system introduction, quality control standard, including, normalizing including a material, and etc. through the part of the effort to reduce the cost low was actively in progress. As to the green growth era, as follows, this paper prescribed the subject and alternative of the print publication industry. It is surrounded by the firstly new digital environment and the generation of the subject. And secondly the printing industry is caused by the point of time when the green growth leaves by the topic which is largest in the global industry and it increases. The printing publication industry has to prepare the bridgehead for the environment-friendly green growth as the alternative for this resolution with first. The support blown in each industry becomes the obligation not being selection. Prestek in which the print publishing was exposed to spend many energies and which is known as the practice of the sustainable print publishing insisted that it mentioned importance of the green printing through the white pages in 2008 and a company had to be the green growth comprised through the environment-friendly activity. The core management for the sustainable printing publication industry presented from Presstack white pages is compacted to 4 words that it is a remove, reduce, recover, and recycle. Second, positively the digital printing(POD) system should be utilized. In the worldwide print out market, the digital printing area stops at the level of 10% or so but the change over and growth of the market of an analog-to-digital will increase rapidly in the future. As to the CEO Jeff Hayes of the Infoland, the offset print referred to that it of the traditional method got old and infirm with the minor phase of the new printing application like the customer to be wanted publication and the print of the digital method led the market. In conclusion, print publishers have to grasp well the market flow in the situation where a digitalization cannot be generalized and a support cannot avoid. And it keeps pace with the flow of the digital age and the recognition about the effort for the development and environment problem have to be raised. Particularly, the active green strategy is employed for the active green strategy.

A Study on the Technology Collaboration between the Main Supplier and Buyer under the Dynamic Environment: The Focus on the Performance of New Product Development (역동적 환경 하에 구매사/주공급사 간의 기술협력은 신제품 개발 프로젝트 성과를 향상시키는가?)

  • Lee, Younsuk;Ham, Minjoo;Moon, Seongwuk
    • Journal of Technology Innovation
    • /
    • v.23 no.3
    • /
    • pp.397-432
    • /
    • 2015
  • This paper investigates the effects of technology collaboration between the main supplier and buyer on buyer's new product development under dynamic environment. Based on 428 Korean manufacturing firms, we conducted regression analysis. The technology collaboration between the main supplier and buyer is adopted as a independent variable and quality, cost and lead time performance of new product development projects are used as dependents variables. Environment dynamic is also used as a moderate variables. We found that the in general, technology collaboration is positively associated with the performance of buyers' new product development, but in the high degree of dynamic environment, technology collaboration is negatively associated with the performance of buyers' new product development unlike our expectation. Thus, we divide our sample into two groups; shipbuilding industry with the low degree of environment dynamic and electronic and IT device industry with the high degree of environment dynamic and conducted a post hoc analysis. As a result, in ship building industry, the technology collaboration is significant to improve NPD projects performance, while in electronic and IT device industry, the technology collaboration with a main supplier is not significant as well as coefficient is negative. In that, under the highly dynamic condition with the fast change of technology and products obsolescence the NPD collaboration with the main supplier does not works unlike a stable environment. This implies that the NPD attributes of buyer are different by their environmental factor and the fit between given environmental feature and the collaboration synergy is critical factor for improving the effect of NPD collaboration between supplier and buyer.

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Economic Impact of HEMOS-Cloud Services for M&S Support (M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과)

  • Jung, Dae Yong;Seo, Dong Woo;Hwang, Jae Soon;Park, Sung Uk;Kim, Myung Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.261-268
    • /
    • 2021
  • Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.