DOI QR코드

DOI QR Code

Recent Progress in Micro In-Mold Process Technologies and Their Applications

마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용

  • Sung Hyun Kim (Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University) ;
  • Young Woo Kwon (Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University) ;
  • Suck Won Hong (Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University)
  • 김성현 (부산대학교 컬러변조 초감각 인지기술 선도연구센터) ;
  • 권영우 (부산대학교 컬러변조 초감각 인지기술 선도연구센터) ;
  • 홍석원 (부산대학교 컬러변조 초감각 인지기술 선도연구센터)
  • Received : 2023.05.15
  • Accepted : 2023.06.15
  • Published : 2023.06.30

Abstract

In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

전 세계적 모바일 스마트 기기 혁명은 사람이 접하는 모든 공간에서 독립된 형태의 전기회로를 요구하고 있으며, 전자기기간 연결된 사물인터넷의 구현은 사용자 측면에서 운용이 쉽고 지속 가능한 디지털 생태계 인프라 구축에서 매우 중요한 위치를 차지하고 있다. 이러한 기술은 자동차 전장품, 가정용 가전제품 및 웨어러블 기기의 생산 기술 발전으로 이어지고 있으며, 특히 최근 소개된 인몰드 전자기기(in-mold electronics, IME)는 기존의 대량 공정의 장점을 극대화할 수 있는 기술로 대두되고 있다. 이 기술은 평평한 2차원 기판에 기능성 잉크를 인쇄하고, 3차원 형상으로 열/사출 성형하여 경량화 및 저비용으로 장치를 생산해내는 경제성 강점을 이유로 산업적인 가치를 평가받고 있다. 본 논문에서는 인몰드 전자 장치의 제조기술 및 응용 측면에 대한 가장 최신의 국내외 연구 그룹에서 제안된 기술 개발을 소개하고자 한다. 신체 표면상에서 독립된 형태의 바이오센서 전자소자의 운용을 위한 생체 모사 기술, 에너지 소자, 생체신호 모니터링 센서들을 인몰드 기술로 구현하는 기술 및 장치 구성은, 4차 산업혁명과 함께 성장 중인 유연인쇄전자 기술과 융합되어 회로 기판 제조기술의 혁신을 가져올 것으로 기대된다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. A. D. Valentine, T. A. Busbee, J. W. Boley, J. R. Raney, A. Chortos, A. Kotikian, J. D. Berrigan, M. F. Durstock, and J. A. Lewis, "Hybrid 3D Printing of Soft Electronics", Adv. Mater., 29, 1703817 (2017). 
  2. H. Hwang and U. Jeong, "Microparticle-Based Soft Electronic Devices: Toward One-Particle/One-Pixel", Adv. Funct. Mater., 30, 1901810 (2019). 
  3. M. J. Kim, K. Pak, J. Choi, T. I. Lee, W. S. Hwang, S. G. Im, and B. J. Cho, "Ultrathin ZrOx-Organic Hybrid Dielectric (EOT 3.2 nm) v ia Initiated Chemical Vapor Deposition for High-Performance Flexible Electronics", ACS Appl. Mater. Interfaces, 11, 47, 44513 (2019). 
  4. M.-J. Ko, M. Sohn, M.-S. Kim, J. Na, B.-K. Ju, Y.-B. Park, and T.-I. Lee, "Laser Transmission Welding of Flexible Substrates and Evaluation of the Mechanical Properties", J. Microelectron. Packag. Soc., 29, 113 (2022) 
  5. S. J. Oh, B. S. Ma, H. J. Kim, C. Yang, and T.-S. Kim, "Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays", J. Microelectron. Packag. Soc., 27, 77 (2020). 
  6. R. L. Truby, M. Wehner, A. K. Grosskopf, D. M. Vogt, S. G. M. Uzel, R. J. Wood, and J. A. Lewis, "Soft Somatosensitive Actuators via Embedded 3D Printing", Adv. Mater. 30, 1706383 (2018). 
  7. S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, Y. Jiang, X. Yan, Y. Yun, W. Burnett, A. S. Y. Poon, J. B.-H. Tok, X. Chen, and Z. Bao, "A wireless body area sensor network based on stretchable passive tags", Nat. Electron., 2, 361 (2019). 
  8. Z. Zhu, D. W. H. Ng, H. S. Park, and M. C. McAlpine, "3D-printed multifunctional materials enabled by artificial-intelligence assisted fabrication technologies", Nat. Rev. Mater., 6, 27 (2021). 
  9. B. Jumet, M. D. Bell, V. Sanchez, and D. J. Preston, "A Data-Driven Review of Soft Robotics", Adv. Intell. Syst., 4, 2100163 (2022). 
  10. M. A. Skylar-Scott, J. Mueller, C. W. Visser, and J. A. Lewis, "Voxelated soft matter via multimaterial multinozzle 3D printing", Nature, 575, 330 (2019). 
  11. H. Moon, H. Seong, W. C. Shin, W.-T. Park, M. Kim, S. Lee, J. H. Bong, Y.-Y. Noh, B. J. Cho, S. Yoo, and S. G. Im, "Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics", Nat. Mater., 14, 628 (2015). 
  12. J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. Bao, and S. Park, "Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics", Adv. Mater., 31, 1904765 (2019). 
  13. S. Kim, "Inkjet-Printed Electronics on Paper for RF Identification (RFID) and Sensing", Electronics, 9, 1636 (2020). 
  14. M. Beltrao, F. M. Duarte, J. C. Viana, and V. Paulo, "A review on in-mold electronics technology", Polym Eng Sci., 62, 967 (2022). 
  15. L. O'Connell, "Functional Ink Systems for In Mold Electronics" DuPont, (Jan. 8, 2020) from https://www.dupont.com/ 
  16. S. Azam and B.-K. Lee, "Experimental measurement and modeling of film thickness distribution in film insert injection molding process", Int. J. Adv. Manuf. Technol., 120, 1347 (2022). 
  17. R. Park, H. Kim, S. Lone, S. Jeon, Y. W. Kwon, B. Shin, and S. W. Hong, "One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application", Sensors, 18, 1857 (2018). 
  18. X. Liu, D. Li, H. Fukutani, P. Trudeau, L. Khoun, O. Mozenson, K. L. Sampson, M. Gallerneault, C. Paquet, T. Lacelle, B. Deore, O. Ferrand, J. Ferrigno, P. R. L. Malenfant, and A. J. Kell, "UV-Sinterable Silver Oxalate-Based Molecular Inks and Their Application for In-Mold Electronics", Adv. Electron. Mater., 7, 2100194 (2021). 
  19. A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A. Lewis, "Biomimetic 4D printing", Nat. Mater., 15, 413 (2016). 
  20. A. Kotikian, C. McMahan, E. C. Davidson, J. M. Muhammad, R. D. Weeks, C. Daraio, and J. A. Lewis, "Untethered soft robotic matter with passive control of shape morphing and propulsion", Sci. Robot., 4, eaax7044 (2019). 
  21. G.-H. Lee, H. Moon, H. Kim, G. H. Lee, W. Kwon, S. Yoo, D. Myung, S. H. Yun, Z. Bao, and S. K. Hahn, "Multifunctional materials for implantable and wearable photonic healthcare devices", Nat. Rev. Mater., 5, 149, (2020). 
  22. J. Byun, B. Lee, E. Oh, H. Kim, S. Kim, S. Lee, and Y. Hong, "Fully printable, strain-engineered electronic wrap for customizable soft electronics", Sci. Rep., 7, 45328 (2017). 
  23. W.-J. Song, S. Lee, G. Song, and S. Park, "Stretchable Aqueous Batteries: Progress and Prospects", ACS Energy Lett., 4, 177 (2019). 
  24. K. Muldoon, Y. Song, Z. Ahmad, X. Chen, and M.-W. Chang, "High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices", Micromachines, 13, 642 (2022). 
  25. C. T. Tracey, A. L. Predeina, E. F. Krivoshapkina, and E. Kumacheva, "A 3D printing approach to intelligent food packaging", Trends Food Sci. Technol., 127, 87 (2022). 
  26. S.-Y. Jun, T.-Y. Lee, S.-J. Park, J. Lee, and S. Yoo, "Effects of Solder Particle Size on Rheology and Printing Properties of Solder Paste", J. Microelectron. Packag. Soc., 29, 91 (2022). 
  27. Y.-G. Kim, H.-S. Kim, T.-W. Kim, and H.-S. Kim, "Solder Alloy Types and Solder Joint Reliability Evaluation Techniques", J. Microelectron. Packag. Soc., 30, 17 (2023). 
  28. M.-S. Jeong, H.-T. Kim, and J.-W. Yoon, "Improvement of Reliability of Low-melting Temperature Sn-Bi Solder", J. Microelectron. Packag. Soc., 29, 1 (2022). 
  29. Y. H. Ju, Y. B. Shin, and J.-W. Kim, "A Novel Patterning Method for Silver Nanowire-based Transparent Electrode using UV-Curable Adhesive Tape", J. Microelectron. Packag. Soc., 27, 73 (2020). 
  30. V. M. G. Correia, N. Pereira, N. Perinka, P. Costa, J. d. Campo, and S. Lanceros-Mendez, "Printed 3D Gesture Recognition Thermoformed Half Sphere Compatible with In-Mold Electronic Applications", Adv. Eng. Mater., 31, 2200730 (2022). 
  31. S. Y. Lee, S. H. Jang, H. K. Lee, J. S. Kim, S. Lee, H. J. Song, J. W. Jung, E. S. Yoo, and J. Choi, "The development and investigation of highly stretchable conductive inks for 3-dimensional printed in-mold electronics", Org. Electron., 85, 105881 (2020). 
  32. Y. Gong, K. J. Cha, and J. M. Park, "Deformation characteristics and resistance distribution in thermoforming of printed electrical circuits for in-mold electronics application", Int. J. Adv. Manuf. Technol., 108, 749 (2020). 
  33. R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, "Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates", Nano Lett., 11, 3881 (2011). 
  34. T. Odashima, Y. Susumago, and S. Nagata, "Wafer-Level Flexible 3D Corrugated Interconnect Formationfor Scalable In-Mold Electronics with Embedded Chiplets", IEEE 71st Electronic Components and Technology Conference (ECTC) (2021). 
  35. Y. Hwang, M. K. Kim, Z. Zhao, B. Kim, T. Chang, T. F. Fan, M. S. Ibrahim, S. Suresh, C. H. Lee, and N.-J. Cho, "Plant-Based Substrate Materials for Flexible Green Electronics", Adv. Mater. Technol., 7, 2200446 (2022). 
  36. Y. J. Park, B. K. Sharma, S. M. Shinde, M.-S. Kim, B. Jang, J.-H. Kim, and J.-H. Ahn, "All MoS2-Based Large Area, Skin-Attachable Active-Matrix Tactile Sensor", ACS Nano, 13, 3023 (2019). 
  37. S. Jang, J. H. Shin, and W. I. Park, "Metal-organic Chemical Vapor Deposition of Uniform Transition Metal Dichalcogenides Single Layers and Heterostructures", J. Microelectron. Packag. Soc., 27, 119 (2020). 
  38. S.-K. Lee, J.-B. Lee, J. Singh, K. Rana, and J.-H. Ahn, "Drying-Mediated Self-Assembled Growth of Transition Metal Dichalcogenide Wires and their Heterostructures", Adv. Mater., 27, 4142 (2015). 
  39. D. U. Lim, S. Choi, S. Kim, Y. J. Choi, S. Lee, M. S. Kang, Y.-H. Kim, and J. H. Cho, "All-Inkjet-Printed Vertical Heterostructure for Wafer-Scale Electronics", ACS Nano, 13, 7, 8213 (2019). 
  40. S. Chung, M. Jang, S.-B. Ji, H. Im, N. Seong, J. Ha, S.-K. Kwon, Y.-H. Kim, H. Yang, and Y. Hong, "Flexible High-Performance All-Inkjet-Printed Inverters: Organo-Compatible and Stable Interface Engineering", Adv. Mater., 25, 4773 (2013). 
  41. M. Hubmann, B. Madadnia, J. Groten, M. Pletz, J. Vanfleteren, B. Stadlober, F. Bossuyt, J. Kaur, and T. Lucyshyn, "Process Optimization of Injection Overmolding Structural Electronics with Regard to Film Distortion", Polymers, 14, 5060 (2022). 
  42. T. Alajoki, M. Koponen, M. Tuomikoski, M. Heikkinen, A. Keranen, K. Keranen, J. T. Makinen, J. Aikio, and K. Ronka, "Hybrid in-mould integration for novel electrical and optical features in 3D plastic products", 2012 4th Electronic System-Integration Technology Conf., ESTC (2012). 
  43. A. Wimmer, H. Reichel, and K. Schmidt, "New standards for 3D-userinterfaces-manufactured by a Film Insert Molding process", IEEE 13th International Congress Molded Interconnect Devices (MID) (2018). 
  44. I. S. Choi, S. Park, S. Jeon, Y. W. Kwon, R. Park, R. A. Taylor, K. Kyhm, and S. W. Hong, "Strain-tunable optical microlens arrays with deformable wrinkles for spatially coordinated image projection on a security substrate", Microsyst. Nanoeng., 8, 98, (2022). 
  45. M. Shin, W.-J. Song, H. B. Son, S. Yoo, S. Kim, G. Song, N.-S. Choi, and S. Park, "Highly Stretchable Separator Membrane for Deformable Energy-Storage Devices", Adv. Energy Mater., 8, 1801025 (2018). 
  46. C.-P. Hsiao, J.-K. Chen, and C.-C. Li, "Microencapsulated Liquid Metals for the Autonomous Restoration of In-Mold Electronic Circuits", ACS Appl. Electron. Mater., 4, 936 (2022). 
  47. W.-J. Song, M. Kong, S. Cho, S. Lee, J. Kwon, H. B. Son, J. H. Song, D.-G. Lee, G. Song, S.-Y. Lee, S. Jung, S. Park, and U. Jeong, "Stand-Alone Intrinsically Stretchable Electronic Device Platform Powered by Stretchable Rechargeable Battery", Adv. Funct. Mater., 30, 2003608 (2020). 
  48. Y. Yang, X. Guo, M. Zhu, Z. Sun, Z. Zhang, T. He, and C. Lee, "Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth", Adv. Energy Mater., 13, 2203040 (2023). 
  49. C. S. Buga and J. C. Viana, "The role of printed electronics and related technologies in the development of smart connected products", Flex. Print. Electron., 7, 043001 (2022). 
  50. J. Jeong, S. Jeon, X. Ma, Y. W. Kwon, D.-M. Shin, and S. W. Hong, "A Sustainable and Flexible Microbrush-Faced Triboelectric Generator for Portable/Wearable Applications", Adv. Mater., 33, 2102530 (2021). 
  51. T. Kim, S. Jeon, S. Lone, S. J. Doh, D.-M. Shin, H. K. Kim, Y.-H. Hwang, and S. W. Hong, "Versatile nanodot-patterned Gore-Tex fabric for multiple energy harvesting in wearable and aerodynamic nanogenerators", Nano Energy, 54, 209 (2018). 
  52. S. Jeon, J. Jeong, and S. W. Hong, "3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting", J. Microelectron. Packag. Soc., 26, 9 (2019). 
  53. R. Park, S. Jeon, J. Jeong, S.-Y. Park, D.-W. Han, and S. W. Hong, "Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing", Biosensors, 12, 136 (2022). 
  54. S. Xu, J. Kim, J. R. Walter, R. Ghaffari, and J. A. Rogers, "Translational gaps and opportunities for medical wearables in digital health", Sci. Transl. Med., 14, eabn6036 (2022). 
  55. M. Wang, Y. Yang, J. Min, Y. Song, J. Tu, D. Mukasa, C. Ye, C. Xu, N. Heflin, J. S. McCune, T. K. Hsiai, Z. Li, and W. Gao, "A wearable electrochemical biosensor for the monitoring of metabolites and nutrients", Nat. Biomed. Eng., 6, 1225 (2022). 
  56. D. H. Keum, S.-K. Kim, J. Koo, G.-H. Lee, C. Jeon, J. W. Mok, B. H. Mun, K. J. Lee, E. Kamrani, C.-K. Joo, S. Shin, J.-Y. Sim, D. Myung, S. H. Yun, Z. Bao, and S. K. Hahn, "Wireless smart contact lens for diabetic diagnosis and therapy", Sci. Adv., 6, eaba3252 (2020). 
  57. S. Jeon, Y. W. Kwon, J. Y. Park, and S. W. Hong, "Fluorescent Detection of Bovine Serum Albumin Using Surface Imprinted Films Formed on PDMS Microfluidic Channels", J. Nanosci. Nanotechnol.,19, 4736 (2019). 
  58. J. Kwon, C. DelRe, P. Kang, A. Hall, D. Arnold, I. Jayapurna, L. Ma, M. Michalek, R. O. Ritchie, and T. Xu, "Conductive Ink with Circular Life Cycle for Printed Electronics", Adv. Mater., 34, 2202177 (2022). 
  59. D. Afanasenkau, D. Kalinina, V. Lyakhovetskii, C. Tondera, O. Gorsky, S. Moosavi, N. Pavlova, N. Merkulyeva, A. V. Kalueff, I. R. Minev, and P. Musienko, "Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces", Nat. Bio. Eng., 4, 1010 (2020).  
  60. Y. W. Kwon, J. Park, T. Kim, S. H. Kang, H. Kim, J. Shin, S. Jeon, and S. W. Hong, "Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Non-Planar Substrates for Biomimetic Hierarchical Photonic Structures", ACS Nano, 10, 4609 (2016). 
  61. I. S. Choi, S. Park, S. Jeon, Y. W. Kwon, R. Park, R. A. Taylor, K. Kyhm, and S. W. Hong, "Strain-tunable optical microlens arrays with deformable wrinkles for spatially coordinated image projection on a security substrate", Microsyst. Nanoeng., 8, 98, (2022). 
  62. W. Zhou, Y. Ou, L. Huang, E. Song, F. Ma, Z. Xia, H. Liang, and Q. Zhang, "Shining Transparent Displays with Stable Narrow-Band Blue-Emitting Phosphor in Layered Film", Adv. Mater., 34, 2206278 (2022). 
  63. Glass Enterprise Edition 2, Google, from https://developers.google.com/glass-enterprise 
  64. D. Weerakoon, V. Subbaraju, T. Tran, and A. Misra, "Demonstrating Multi-modal Human Instruction Comprehension with AR Smart Glass", IEEE, 15th International Conference on COMmunication Systems & NETworkS (COMSNETS) (2023). 
  65. U. Y. Yang and K. H. Kim, "Trends of VR/AR Wearable Display Technology", Electronics and Telecommunications Research Institute, Electronics and Telecommunications Trends (2016). 
  66. Z. Li, P. Lin, Y.-W. Huang, J.-S. Park, W. T. Chen, Z. Shi, C.-W. Qiu, J.-X. Cheng, and F. Capasso, "Meta-optics achieves RGB-achromatic focusing for virtual reality", Sci. Adv., 7, eabe4458 (2021). 
  67. Z. Li, R. Pestourie, J.-S.Park, Y.-W.Huang, S. G. Johnson, and F. Capasso, "Inverse design enables large-scale high-performance meta-optics reshaping virtual reality", Nat. Commun., 13, 2409 (2022).