• Title/Summary/Keyword: mantle plume

Search Result 10, Processing Time 0.03 seconds

Seismic study of the Ulleung Basin crust and its implications for the opening of the East Sea (탄성파 탐사를 통해 본 울릉분지의 지각특성과 동해형성에 있어서의 의미)

  • Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.9-26
    • /
    • 1999
  • The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.

  • PDF

A New Tectonic Model of Cretaceous East Asia: Role of Mantle Plume (백악기 동아시아 신지구조 모델: 맨틀 플룸의 역할)

  • Lee, Changyeol
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.337-345
    • /
    • 2019
  • The hypothesis of ridge subduction which explains the Cretaceous igneous activities in East Asia including China, Korea and Japan, has been widely accepted in the society. Especially, the hypothesis explains the southwest-to-northeast migration of the Cretaceous adakite emergence in Southwest Japan. However, the hypothesis has several issues because the geochemical analyses and plate reconstruction model are not consistent with the consequences of the ridge subduction. To resolve the issues, a new hypothesis of the plume-continent and plume-slab interaction is suggested, which explains the igneous activities during the Cretaceous. In this review, I briefly introduce the two hypotheses and suggest an additional future study to prove the new hypothesis.

Volcanism and Petrogenesis of Dodong Basaltic Rocks in the Ulleung Island, East Sea (울릉도 도동현무암질암류의 화산작용과 암석성인)

  • Hwang, Sang Koo;Kim, Jae Ho;Jang, Yundeuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.361-371
    • /
    • 2017
  • We investigated geochemical characteristics of the Dodong Basaltic Rocks in the lower part of the Ulleung Island. They have lithological range of alkali basalt to trachybasalt, belonging to Na and K subseries of alkaline series. They mostly fall within the field of alkalline within-plate basalts on tectonic discrimination diagrams, and then plot in the field of oceanic island basalt (OIB). Geochemically, extension of lithospheric mantle and asthenospheric upwelling after East Sea under an Cenozoic extensional tectonic setting might be a heat source for partial melting of the enriched lithospheric mantle, which might generate the basaltic magma. But we cannot exclude that mantle plume might also be a heat source for melting of the lithospheric mantle.

Teleseismic Travel Time Tomography for the Mantle Velocity Structure Beneath the Melanesian Region (원거리 지진 주시 토모그래피를 이용한 멜라네시아 지역의 맨틀 속도 구조 연구)

  • Jae-Hyung Lee;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • The Melanesian region in the western Pacific is dominated by complex plate tectonics, with the largest oceanic plateau, the OntongJava plateau, and a hotspot, the Caroline Islands. To better understand the complex geodynamics of the region, we estimate P- and S-velocity models and 𝛿 (VP/VS) model by using relative teleseismic travel times measured at seismometers on land and the seafloor. Our results show high-velocity anomalies in the subduction zones of the Melanesian region to a depth of about 400 km, which is thought to be subducting Solomon Sea, Bismarck, and Australian plates along plate boundaries. Along subduction zones, positive 𝛿 (VP/VS) anomalies are found, which may be caused by partial melting due to dehydration. A broad high-velocity anomaly is observed at 600 km depth below the Ontong-Java plateau, with a negative 𝛿 (VP/VS) anomaly. This is thought to be a viscous and dry remnant of the Pacific plate that subducted at 45-25 Ma, with a low volume of fluids due to dehydration for a long period in the mantle transition zone. Beneath the Caroline Islands, a strong low-velocity anomaly is obseved to a depth of 800 km and appears to be connected to the underside of the remnant Pacific plate in the mantle transition zone. This suggests that the mantle plume originating in the lower mantle has been redirected due to the interaction with the remnant Pacific plate and has reached its current location. The mantle plume also has a positive 𝛿 (VP/VS) anomaly, which is thought to be due to the influence of embedded fluids or partial melting. A high-velocity anomaly, interpreted as an effect of the thick lithosphere beneath the Ontong-Java plateau, is observed down to 300 km depth with a negative 𝛿 (VP/VS) anomaly, which likely indicate that little fluid remains in the melt residue accumulated in the lithosphere.

Geochemistry and K-Ar Age of Alkali Basalts from Weno Island, Caroline Islands, Western Pacific (서태평양 캐롤라인군도 웨노섬 알칼리 현무암류의 지구화학 및 K-Ar 연대)

  • Lee, Jong-Ik;Hur, Soon-Do;Park, Byong-Kwon;Han, Sang-Jun
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2001
  • Geochemical and Sr-Nd isotopic compositions and K-Ar ages are analyzed in volcanic rocks from Weno Island, Caroline Islands. Seven Weno lava samples of alkali basalt and basaltic trachyandesite are aphyric or sparsely phyric comprising olivine, plagioclase, and clinopyroxene phenocrysts. Whole-rock geochemical variation of Weno lavas reflects main fractional crystallization of olivine and Cr-spinel phenocrysts. Newly determined K-Ar ages of Weno lavas range from 6.7 to 11.3 Ma (late Miocene), indicating their formation during primary volcanic stage of Chuuk Islands. Trace element compositions of Weno lavas are very similar to those of typical ocean island basalts (OIBs), suggesting their formation during intra-plate mantle plume activity. The plume composition is isotopically very similar to that of Hawaiian hot spot. However, the age span of Chuuk volcanism is longer than that of the other individual volcanoes in the Pacific.

  • PDF

Extinction, Flood Basalts, and Geomagnetic Field (멸종, 범람 현무암과 지구자기장)

  • Yu, Yong-Jae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • For the past 300 Ma, massive extinctions are associated with major flood basalt eruptions. The geomagnetic Superchrons (Cretaceous Normal Superchron, Kiaman Long Reversed Superchron, Moyero Long Reversed Superchron) precede the major flood basalt eruptions and massive extinctions. It is likely that upswing of mantle plumes is responsible for the generation of continental flood basalt. Eruption of flood basalts results in a catastrophic climate change as well as a massive genus depletion.

  • PDF

Petrology and Geochemistry of Dokdo Valcanic Rocks, East Sea (독도 화산암류의 암석학적 특성과 지구화학)

  • Lee, Jong-Ik;Hur, Soon-Do;Lee, Mi-Jung;Yoo, Chan-Min;Park, Byong-Kwon;Kim, Yea-Dong;Kwon, Moon-Sang;Nagao, Keisuke
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.465-482
    • /
    • 2002
  • Petrological, geochemical, and geochronological studies of Dokdo volcanic rocks, East Sea, have been carried out to understand their petrogenesis. Dokdo volcanic activity is divided into three stages according to occurrences and eruption ages of rocks. The second-stage activity is accompanied by large volume of pyroclastics and lavas of intermediate composition, and occupies most of the East and West islets. K-Ar biotite and whole-rock ages indicate that Dokdo volcanic activity occurred during late Pliocene and became systematically younger toward later stages: namely, 2.7-2.4 Ma for the first-stage trachyte, 2.4-2.3Ma for the second-stage trachyandesite and 2.2-2.1 Ma for the last-stage trachyte and dikes. Dokdo volcanic rocks are of intermediate to felsic compostions, and have OIB-like alkaline nature. The geochemical similarities between Dokdo and Ulleungdo volcanic rocks suggest that they were formed from the same mantle plume. However, considering the difference of eruption ages between Dokdo (2.7-2.1 Ma) and Ulleungdo (1.4-0.01 Ma) volcanic rocks, the former seems to have been formed by earlier hot spot activity.

Study on the Geochemical Characteristics of the Mesozoic Volcanic Rocks in Da Hinggan Ling Area, Northeast China (중국 북동부 대흥안령 지역 중생대 화산암류에 대한 암석화학적 특성 연구)

  • Yun, Sung-Hyo;Won, Chong-Kwan;Lee, Moon-Won;Lin, Qiang
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.67-80
    • /
    • 2000
  • We studied petrological and geochemical characteristics of the Mesozoic volcanic rocks in the Da Hinggan Ling area northeast China, and discussed tectonic settings and origin of the Mesozoic volcanic rocks in northeast Asia. Volcanic rocks in Da Hinggan Ling area are composed of alkaline to subalkaline basalt-basaltic andesite-andesite-dacite-rhyolite, showing typical BAR(basalt-andesite-rhyolite) association. However, most of the volcanic rocks are basaltic and rhyolitic in composition, and andesitic rocks are relatively rare, which shows bimodal characteristics. Rb, Ba, Th and other incompatible element contents in the volcanic rocks are enriched, but the contents decrease with increasing the compatibility. REEs are fractionated and REE patterns of volcanic rocks are characterized by a high LILE/HFSE. On the tectonomagmatic discriminant diagram of Hf-Th-Nb, they fall into the fields for subduction-related destructive plate margin basalts and its differentiates. We suggest that the tectonomagmatic setting of Da Hinggan Ling area was located at the continental margin arc related with subduction environment during the Mesozoic time or may be derived from mantle plume contaminated geochemically from subducting slabs, although it is, at present within the Asia continent.

  • PDF

Investigation of Post-seismic Sites Using Local Seismic Tomography in the Korean Peninsula (지진 토모그래피를 이용한 한반도의 과거진원지역의 특성 연구)

  • Kim So-Gu;Bae Hyung-Sub
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.111-128
    • /
    • 2006
  • Three dimensional crustal structure and source features of earthquake hypocenters on the Korean peninsula were investigated using P and S-wave travel time tomography. The main goal of this research was to find Vp/Vs anomalies at earthquake hypocenters as well as those of crustal structure of basins and deep tectonic settings. This allowed fer the extrapolation of more detailed seismotectonic force from the Korean peninsula. The earthquake hypocenters were found to have high Vp/Vs ratio discrepancies (VRD) at the vertical sections. High V/p/Vs ratios were also found in the sedimentary basins and beneath the Chugaryong Rift Zone (CRZ), which was due to mantle plume that subsequently solidified with many fractures and faults which were saturated with connate water. The hypocenters of most earthquakes were found in the upper crust for Youngwol (YE), Kyongju (KE), Hongsung (HE), Kaesong (KSE), Daekwan (DKE), and Daehung (DHE) earthquakes, but near the subcrust or the Moho Discontinuity for Mt. Songni (SE), Sariwon (SRE) and Mt. Jiri (JE) earthquakes. Especially, we found hot springs of the Daekwan, Daehung and Unsan regions coincide with high VRD. Also, this cannot rule out the possibility that there are some partial meltings in the subcrust of this region. High VRD might indicate that many faults and fractures with connate water were dehydrated when earthquakes took place, reducing shear modulus in the hypocenter areas. This is can be explained by due to the fact that a point source which is represented by the moment tensor that may involve changes in volume, shear fracture, and rigidity. High Vp/Vs ratio discrepancies (VRD) were also found beneath Mt. Backdu beneath 40 km, indicating that magma chamber existed beneath Mt. Backdu is reducing shear modulus of S-wave velocity.