DOI QR코드

DOI QR Code

A New Tectonic Model of Cretaceous East Asia: Role of Mantle Plume

백악기 동아시아 신지구조 모델: 맨틀 플룸의 역할

  • Lee, Changyeol (Department of Earth System Sciences, Yonsei University)
  • 이창열 (연세대학교 지구시스템과학과)
  • Received : 2019.09.06
  • Accepted : 2019.10.01
  • Published : 2019.10.28

Abstract

The hypothesis of ridge subduction which explains the Cretaceous igneous activities in East Asia including China, Korea and Japan, has been widely accepted in the society. Especially, the hypothesis explains the southwest-to-northeast migration of the Cretaceous adakite emergence in Southwest Japan. However, the hypothesis has several issues because the geochemical analyses and plate reconstruction model are not consistent with the consequences of the ridge subduction. To resolve the issues, a new hypothesis of the plume-continent and plume-slab interaction is suggested, which explains the igneous activities during the Cretaceous. In this review, I briefly introduce the two hypotheses and suggest an additional future study to prove the new hypothesis.

중국, 한국 그리고 일본을 포함한 동아시아 지역의 백악기 시기 화성 활동을 설명하기 위하여 해령 섭입 가설이 제안되어 널리 받아들여 졌다. 특히, 해령 섭입 가설은 남서일본에서 발견되는 아다카이트의 북동 방향으로의 분출 시기의 감소를 잘 설명하였다. 그러나, 해령 섭입 가설은 이후 밝혀진 지구화학 연구 결과 및 판재구성 모델과 배치되기 때문에 여러 문제점을 지닌다. 따라서, 해령 섭입 가설의 문제점을 극복하고 이 시기 화성 활동을 설명하기 위한 플룸-대륙 및 플룸-슬랩 상호 작용 가설이 제안되었고 이 가설은 해령 섭입 가설이 내포한 문제점을 극복할 뿐만 아니라 동아시아 지역의 백악기 화성 활동을 설명할 수 있다. 이 고찰에서는 해령 섭입 가설과 그 대안인 플룸-대륙 및 플룸-슬랩 상호 작용 가설에 대해 요약하여 소개하고 이 대안 가설을 증명하기 위한 추가 연구에 대해 제언한다.

Keywords

References

  1. Betts, P.G., Giles, D., Schaefer, B.F. and Mark, G. (2007) 1600-1500 Ma hotspot track in eastern Australia: implications for Mesoproterozoic continental reconstructions. Terra Nova, v.19, p.496-501. https://doi.org/10.1111/j.1365-3121.2007.00778.x
  2. Castillo, P.R. (2012) Adakite petrogenesis. Lithos, v.134-135, p.304-316. https://doi.org/10.1016/j.lithos.2011.09.013
  3. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, v.101, p.225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  4. Defant, M.J. and Drummond, M.S. (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, v.347, p.662-665. https://doi.org/10.1038/347662a0
  5. Ernst, R.E. and Buchan, K.L. (2003) Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences, v.31, p.469-523. https://doi.org/10.1146/annurev.earth.31.100901.145500
  6. French, S.W. and Romanowicz, B. (2015) Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, v.525, p.95-99. https://doi.org/10.1038/nature14876
  7. Gao, S., Rudnick, R.L., Xu, W.-L., Yuan, H.-L., Liu, Y.-S., Walker, R.J., Puchtel, I.S., Liu, X., Huang, H., Wang, X.-R. and Yang, J. (2008) Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, v.270, p.41-53. https://doi.org/10.1016/j.epsl.2008.03.008
  8. Gerya, T.V. and Yuen, D.A. (2003) Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, v.140, p.293-318. https://doi.org/10.1016/j.pepi.2003.09.006
  9. Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Muller, R.D., Boyden, J., Seton, M., Manea, V.C. and Bower, D.J. (2012) Plate tectonic reconstructions with continuously closing plates. Computers & Geosciences, v.38, p.35-42. https://doi.org/10.1016/j.cageo.2011.04.014
  10. Gutscher, M.-A., Maury, R., Eissen, J.-P. and Bourdon, E. (2000) Can slab melting be caused by flat subduction? Geology, v.28, p.535-538. https://doi.org/10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
  11. Hassan, R., Flament, N., Gurnis, M., Bower, D.J. and Muller, D. (2015) Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems, v.16, p.1465-1489. https://doi.org/10.1002/2015GC005751
  12. Heron, P.J., Lowman, J.P. and Stein, C. (2015) Influences on the positioning of mantle plumes following supercontinent formation. Journal of Geophysical Research: Solid Earth, v.120, p.3628-3648. https://doi.org/10.1002/2014JB011727
  13. Hu, J. and Liu, L. (2016) Abnormal seismological and magmatic processes controlled by the tearing South American flat slabs. Earth and Planetary Science Letters, v.450, p.40-51. https://doi.org/10.1016/j.epsl.2016.06.019
  14. Isozaki, Y., Aoki, K., Nakama, T. and Yanai, S. (2010) New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, v.18, p.82-105. https://doi.org/10.1016/j.gr.2010.02.015
  15. Kay, R.W. (1978) Aleutian magnesian andesites: Melts from subducted Pacific ocean crust. Journal of Volcanology and Geothermal Research, v.4, p.117-132. https://doi.org/10.1016/0377-0273(78)90032-X
  16. Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K. and Kim, S.J. (2016) SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos, v.262, p.88-106. https://doi.org/10.1016/j.lithos.2016.06.027
  17. Kim, S.W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.-J., Kee, W.-S., Yi, K., Lee, Y.S., Kim, B.C. and Park, D.W. (2012) Characteristics of the Early Cretaceous Igneous Activity in the Korean Peninsula and Tectonic Implications. The Journal of Geology, v.120, p.625-646. https://doi.org/10.1086/667811
  18. Kinoshita, O. (1995) Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophysics, v.245, p.25-35. https://doi.org/10.1016/0040-1951(94)00211-Q
  19. Kinoshita, O. (2002) Possible manifestations of slab window magmatisms in Cretaceous southwest Japan. Tectonophysics, v.344, p.1-13. https://doi.org/10.1016/S0040-1951(01)00262-1
  20. Lee, C. (2018) Initiation of adakite occurrence in Cretaceous arc, Northeast Asia. Geosciences Journal, v.22(3), p.383-391. https://doi.org/10.1007/s12303-017-0070-0
  21. Lee, C. and Lim, C. (2014) Short-term and localized plume-slab interaction explains the genesis of Abukuma adakite in Northeastern Japan. Earth and Planetary Science Letters, v.396, p.116-124. https://doi.org/10.1016/j.epsl.2014.04.009
  22. Lee, C. and Lim, C. (2016) Three-dimensional time-evolving plume-slab interaction for the generation of the Abukuma adakite, Northeast Japan. Gondwana Research, v.38, p.99-112. https://doi.org/10.1016/j.gr.2015.10.016
  23. Lee, C. and Ryu, I.-C. (2015) A New Tectonic Model for the Genesis of Adakitic Arc Magmatism in Cretaceous East Asia. In 'Subduction Dynamics: From Mantle Flow to Mega Disasters', Morra, G., et al. (Eds.), AGU Monograph, Wiley, p.69-79.
  24. Li, X.-h. (2000) Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, v.18, p.293-305. https://doi.org/10.1016/S1367-9120(99)00060-7
  25. Lim, C., Huh, M., Yi, K. and Lee, C. (2015) Genesis of the columnar joints from welded tuff in Mount Mudeung National Geopark, Republic of Korea. Earth, Planets and Space, v.67, p.152. https://doi.org/10.1186/s40623-015-0323-y
  26. Ling, M.-X., Li, Y., Ding, X., Teng, F.-Z., Yang, X.-Y., Fan, W.-M., Xu, Y.-G. and Sun, W. (2013) Destruction of the North China Craton Induced by Ridge Subductions. The Journal of Geology, v.121, p.197-213. https://doi.org/10.1086/669248
  27. Liu, L. and Stegman, D.R. (2012) Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, v.482, p.386-389. https://doi.org/10.1038/nature10749
  28. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, v.6, p.121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  29. Mibe, K., Kawamoto, T., Matsukage, K.N., Fei, Y. and Ono, S. (2011) Slab melting versus slab dehydration in subduction-zone magmatism. Proceedings of the National Academy of Sciences, v.108, p.8177-8182. https://doi.org/10.1073/pnas.1010968108
  30. Okada, H. (1999) Plume-related sedimentary basins in East Asia during the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, v.150, p.1-11. https://doi.org/10.1016/S0031-0182(99)00003-6
  31. Peacock, S.M. (1996) Thermal and petrological structure of subduction zones (overview) in In Subduction, Top to Bottom, Bebout, G. E., et al. (Eds.), American Geophysical Union, p.119-134.
  32. Richards, J.P. and Kerrich, R. (2007) Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, v.102, p.537-576. https://doi.org/10.2113/gsecongeo.102.4.537
  33. Ryu, I.-C. and Lee, C. (2017) Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia. Earth and Planetary Science Letters, v.479, p.206-218. https://doi.org/10.1016/j.epsl.2017.09.032
  34. Sdrolias, M. and Muller, R.D. (2006) Controls on back-arc basin formation. Geochemistry Geophysics Geosystems, v.7, DOI:10.1029/2005GC001090
  35. Steinberger, B. and Torsvik, T.H. (2012) A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochemistry, Geophysics, Geosystems, v.13, DOI:10.1029/2011GC003808
  36. Wang, F., Zhou, X.-H., Zhang, L.-C., Ying, J.-F., Zhang, Y.-T., Wu, F.-Y. and Zhu, R.-X. (2006a) Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, v.251, p.179-198. https://doi.org/10.1016/j.epsl.2006.09.007
  37. Wang, Q., Wyman, D.A., Xu, J.-F., Zhao, Z.-H., Jian, P., Xiong, X.-L., Bao, Z.-W., Li, C.-F. and Bai, Z.-H. (2006b) Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, v.89, p.424-446. https://doi.org/10.1016/j.lithos.2005.12.010
  38. Wee, S.-M., Choi, S.-G., Ryu, I.-C. and Shin, H.-J. (2006) Geochemical Characteristics of the Cretaceous Jindong Granites in the Southwestern Part of the Gyeongsang Basin, Korea: Focussed on Adakitic Signatures. Economic and Environmental Geology, v.39, p.555-566.
  39. Wu, F.-Y., Sun, D.-Y., Li, H., Jahn, B.-M. and Wilde, S. (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, v.187, p.143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
  40. Xu, J.-F., Shinjo, R., Defant, M.J., Wang, Q. and Rapp, R.P. (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, v.30, p.1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
  41. Yamamoto, T. and Hoang, N. (2009) Synchronous Japan Sea opening Miocene fore-arc volcanism in the Abukuma Mountains, NE Japan: An advancing hot asthenosphere flow versus Pacific slab melting. Lithos, v.112, p.575-590. https://doi.org/10.1016/j.lithos.2009.03.044
  42. Ziegler, P.A. and Cloetingh, S. (2004) Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews, v.64, p.1-50. https://doi.org/10.1016/S0012-8252(03)00041-2