Communications for Statistical Applications and Methods
/
제22권3호
/
pp.223-232
/
2015
The area under the ROC curve (AUC), the volume under the ROC surface (VUS) and the hypervolume under the ROC manifold (HUM) are defined and interpreted with probability that measures the discriminant power of classification models. AUC, VUS and HUM are expressed with the summation and integration notations for discrete and continuous random variables, respectively. AUC for discrete two random samples is represented as the nonparametric Mann-Whitney statistic. In this work, we define conditional Mann-Whitney statistics to compare more than two discrete random samples as well as propose that VUS and HUM are represented as functions of the conditional Mann-Whitney statistics. Three and four discrete random samples with some tie values are generated. Values of VUS and HUM are obtained using the proposed statistic. The values of VUS and HUM are identical with those obtained by definition; therefore, both VUS and HUM could be represented with conditional Mann-Whitney statistics proposed in this paper.
Communications for Statistical Applications and Methods
/
제5권1호
/
pp.133-144
/
1998
In this paper, we propose the two-sample test statistic using Wilcoxon signed rank test on ranked-set sampling(RSS) and obtain the asymptotic relative efficiencies(ARE) of the proposed test statistic with respect to Mann-Whitney-Wilcoxon statistic on simple random sampling(SRS), the Mann-Whitney-Wilcoxon statistic on RSS, sign statistic on RSS and Wilcoxon signed rank test on SRS. From the simulation works, we compare the powers of the proposed test statistic, Mann-Whitney-Wilcoxon statistic on RSS, the usual two-sample t statistic, sign statistic on RSS, where the underlying distributions are uniform, normal, double exponential, logistic and Cauchy distributions.
This paper proposes the two-sample comparison us-ing sign test based on ranked-set sample(RSS). We investigate the asymptotic properties of the proposed test statistic and compare the asymptotic relative efficiencies of the proposed test statistic with re-spect to Mann-Whitney-Wilcoxon test statistic based on RSS and Mann-Whitney-Wilcoxon test statistic based on the simple random sample(SRS).
In this paper, we consider the problem of constructing the lower cofidence intervals for the reliability P(X < Y z,w), where the stress X and the strength Y are the random variables with explanatory variables z and w, respectively. As an estimator of the reliability, a Mann-Whitney type statistic is considered. It is shown that under regularity conditions, the proposed estimator is asymptotically normal. Based on the result, the distribution free lower confidence intervals are constructed.
Suppose that { $X_{i}$ } is a stationary AR(1) process and { $Y_{j}$ } is an ARX process with { $X_{i}$ } as exogeneous variables. Let $Y_{j}$$^{*}$ be the stochastic process which is the sum of $Y_{j}$ and a nonstochastic trend. In this paper we consider the problem of estimating the conditional probability that $Y_{{n+1}}$$^{*}$ is bigger than $X_{{n+1}}$, given $X_{1}$, $Y_{1}$$^{*}$,..., $X_{n}$ , $Y_{n}$$^{*}$. As an estimator for the tolerance probability, an Mann-Whitney statistic based on least squares residuars is suggested. It is shown that the deviations between the estimator and true probability are stochatically bounded with $n^{{-1}$2}/ order. The result may be applied to the stress-strength reliability theory when the stress and strength variables violate the classical iid assumption.umption.n.
In this paper, we propose a Jonckheere type test statistic for testing the parallelism of k regression lines against ordered alternatives. The order restriction problems could arise in various settings such as location, scale, and regression problems. But most of theory about the statistical inferences under order restrictions has been developed to deal with location parameters. The proposed test is an application of Jonckheere's procedure to regression problem. Asymptotic normality and asymptotic distribution-free properties of the test statistic are obtained under some regularity conditions.
표본수 결정에서 요구되는 검정력 함수는 연구가설에 상응하는 가장 적절한 검정방법에 의한 것이어야 한다. 의학연구의 논문에 자주 나타나는 순위자료 또는 범주형 빈도자료의 분석에는 비모수적 방법이 적절하며, 본 논문에서는 단변량 및 이변량 순위변수에 대한 윌콕슨-만-휘트니(Wilcoxon-Mann-Whitney; WMW) 검정법에 의한 표본수 결정방법을 제시한다. 단변량 순위변수의 윌콕슨 검정에서는 귀무가설과 대립가설 하의 분산을 이용한 표본수 공식이 귀무가설 하의 분산만 이용한 표본수 공식보다 정확하지만, 대립가설 하의 분산식에 나타나는 확률값이 일반적으로 알려져 있지 않으므로 이 확률값의 추정이 문제가 된다. 모의실험으로 두 방법에 대한 장, 단점을 알아본다. 효능과 안전성의 이변량 순위변수에서는 이변량 WMW 검정법에 의한 표본수 결정방법이 모수적 검정법에 의한 표본수 결정방법보다 더욱 바람직하다.
두 군의 처리를 비교하는 임상시험에서 효능(efficacy)과 안전성(safety)이 동일하게 중요한 변수로 취급되는 경우에 이변량(bivariate) 반응변수로서 분석되고 연구계획의 단계에서도 이변량 표본수 결정방법이 사용되어야 한다. Thall과 Cheng (1999)은 효능과 안전성의 반응값이 이변량 이항(bivariate binary) 변수인 경우의 표본수 결정방법을 제시하였으며, 본 연구에서는 목표모수 설정과정은 기존의 연구와 같으나 월콕슨-만-휘트니(Wilcoxon-Mann-Whitney: WMW) 통계량에 근거한 검정법과 표본수 결정방법을 제시한다. Thall과 Cheng (1999)의 검정통계량은 변수 변환시킨 비율의 근사 정규성에 근거하는 반면에, WMW 통계량은 확률에 근거한 비모수적 방법으로 이변량 이항변수 뿐만 아니라 이변량 순위변수로 측정된 반응값에도 적용시킬 수 있다 Thall과 Cheng (1999)에 제시한 항암치료 임상연구의 두 예제에 위의 두 다른 방법으로 계산된 표본수를 비교한 결과, Thall과 Cheng (1999)의 첫째 예제에서는 이변량 WMW 방법에 의한 표본수가 더욱 작았으나 둘째 예제에서는 더욱 큰 것으로 나타났다.
A stress-strength model is formulated for s out of k system of identical components. We consider the estimation of system reliability from survival count data from a Bayesian viewpoint. We assume a quadratic loss and a Dirichlet prior distribution. It is shown that a Bayes sequential procedure can be established. The Bayes estimator is compared with the UMVUE obtained by Bhattacharyya and with an estimator based on Mann-Whitney statistic.
This paper reviews nonparametric statistics by Neyman-Pearson test and Fisher test. Nonparametric statistics deal with the small sample with distribution-free assumption in multi-product and small-volume production. Two tests for various nonparametric statistic methods such as sign test, Wilcoxon test, Mann-Whitney test, Kruskal-Wallis test, Mood test, Friedman test and run test are also presented with the steps for testing hypotheses and test of significance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.