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Abstract

Suppose that {X;} is a stationary AR(1) process and {Y;} is an
ARX process with {X;} as exogeneous variables. Let Y," be the stochas-
tic process which is the sum of ¥; and a nonstochastic trend. In this
paper we consider the problem of estimating the conditional probabil-
ity that Y’ , is bigger than Xnt1, given X1,Y7, ..., X, Y. As an es-
timator for the tolerance probability, an Mann-Whitney statistic based
on least squares residuals is suggested. It is shown that the deviations
between the estimator and true probability are stochastically bounded
with n71/2 order. The result may be applied to the stress-strength
reliability theory when the stress and strength variables violate the
classical iid assumption. ‘
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1. INTRODUCTION
Let {X;} be the stationary AR(1) process of the form
X.,' — = a(X,-_l - [,l,) +6ia Ial < 1, (11)

where §; are iid (0,02%) from a continuous distribution F, and {Y;} be the
stationary ARX process, such that

Y; = BYj_1 +v(Xjo1 — ) &5 18l < 1, (1.2)

where ¢; are iid (0, %) from a continuous distribution G and independent of
{6:}. Let Y =w; +Y;, where w; is a nonstochastic trend. The ARX models
are widely used in analyzing linear systems: see Hannan and Diestler (1988)
for the definition and applications of ARX models.

The issue of this paper is motivated by stress-strength reliability theory
despite the technical result itself (cf. Theorem 2.1) is of our interest. In the
classical stress-strength reliability theory both the stress X and the strength
Y are treated as random variables, and there is a concern for estimating the
reliability P(X < Y). See, for example, Birnbaum (1956), Govindarajulu
(1968), Helperin et. al. (1987) and Guttman et. al. (1988). Usually, in
nonparametric setting, the reliability is estimated through the Mann-Whitney
statistic assuming that the observations X and Y’s are mutually independent
and iid. However, in real practice, it is possible that both the stress and
strength random variables are serially correlated and the strength is severely
affected by the stress. For instance, one can consider the situation where
the stress and strength random variables are associated with some part of a
system and they follow the models in (1.1) and (1.2). Suppose that the system
is well-functioning up to time n and that one would like to find a rule, based on
current observations X;,Y;*,i =1,...,n, for deciding whether the part under
consideration should be replaced or not. In this case, it is natural to adopt the
decision rule on which the part is replaced if p, = P(Xa41 < Y| X, Y/ =
1,...,n) is less than a preassigned number po € (0,1). However, since p, is
unknown, the decision rule should be based on an estimate of p,.

Assume that X, = 0 and Yy = 0. Further, for simplicity, assume that the
trend w; is known. Suppose that given observations X,Y)",..., Xx, Y, one
wishes to estimate the conditional probability of the event that Y7, is bigger
than X, ;.. Let

po = P(Xop1 < Yo X0 Y7 i=1,...,n), (1.3)
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and set § = (u,a,3,7) . Due to the equations in (1.1) and (1.2), we can write

Pn = P(X,,+1 < Yn*-f-IIXnaYn)
= H(En),

where H is the common distribution of 6; —¢; and &, = 8Y, + (v —a)X, —
# + wn 1. Therefore, provided that &; and €; are observable and ¢ is known,
Pn can be estimated by the Mann-Whitney statistic

n~? i I(6; —¢; < &,). (1.4)
i,j=1

Since the errors are unobservable and the parameters are unknown, we esti-
mate p, based on residuals.

Let X =n~'Y" | X, and let &,, 3,, ¥» be the estimators of o, 3, v based
on X;,Y;, i =1,...,n, such that &, —a = 0p(n~12), 3, - 8 = Op(n~12)
and 4, — v = Op(n~'/2). Define the residuals 6, = X, — X — Gn(Xioy — X)
and &; = Y; — B,Y;_; — 3.(X i1 — X). Then, the Mann-Whitney statistic
based on the residuals is p, (£, ), where

Pa(z) =n"2 )" 1(6; — €j<z), z€R, (1.5)

ij=1
and
& = BuYa + (Bn — 62)Xn — X +wpypr. (1.6)
In Section 2, it is shown that under regularity conditions,
Pr = Pn(n) = Op(n"V/?)

(cf. Theorem 2.1 ). For proving the above, the following turns out to be very
useful:
sup |p,(z) — H(z)| = Op(n~'7?).

In fact, the above is much related to the oscillation result on the residual
empirical processes in stationary autoregressive processes (cf. Boldin (1982)).
Like Lee and Wei (1996), Bernstein’s inequaluty for martingales plays an
importnat role.

Although we do not present details here, it can be shown without diffi-
culties that Theorem 2.1 is extended to high dimensional cases where {X i} is
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the stationary AR(p) process and {Y;} is the stationary ARX process, such
that

Y; =/Yo1+--+BY + (X1 =)+ A1 (X — 1) +€;.

The proof in this case is essentially the same as of Theorem 2.1.

2. MAIN RESULTS

Theorem 2.1. Let p,, p.(z) and £, be the same as in (1.3), (1.5) and (1.6).
If F and G satisfy

sgp{IF' @)+ |F" @) + 16 @) + 16" (=)} < oo, (2.1)
then

Ipn - ﬁﬂ(éﬂ)l = OP(n—llz)' (22)

Before we prove Theorem 2.1, we introduce lemmas.

Lemma 2.1. Assume that (2.1) holds. Then for any K > 0,

sup |n"32 Y {F(z+¢; + an V3 X;_1 — p))

zlal<K i1

— H(z +an Y?3(X;_1 — p)) + H(z) — F(e; + )} = op(1).
Proof. By Taylor’s series expansion, one can show that

sup [n"3? Y {F(z+¢e;+an V3 (Xioi — ) — Flz +¢;)}

z,jal<K ii=1

< A{n P (X - ) 02y (X - ©)’}, A>0,
in1 i=1

which goes to 0 in probability. Similarly, it can be shown that

sup |n32 zn: {H(z + an" V3 (X;_y — p)) — H(z)}| = op(1).

z,|a|<K ij=1

Therefore, the lemma is established. O
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Lemma 2.2. Assume that F and @ satisfy (2.1). Put

Fa(z,0) = sup n™ V2N (F(z + & +bn~V2Y;_ ) — H(z + bn~1%y;_,)
FH(2) = F(z +¢,)}] = op(1). (2.3

Then for any K > 0, Sup, 1<k 1Tn(z, )] = 0p(1).

The following lemma, due to Shorack and Wellner (1986, P. 809), turns
out to be useful to prove Lemma 2.2.

Lemma 2.3. (Bernstein’s inequality for martingale differences). Let {7, X;,
Fa;n 2 1} be a martingale with EX 1 = 0 and 7 is a stopping time. Suppose
that there exists positive constants M and V such that | X;| < M a.s. for all
tand 3._; E(X?|F;_1) <V as. Then for any 5 > 0,

PSS X 2 1) < 2exp{—n/2(V + Mn/3)}.
i=1

Proof of Lemma 2.2. Put W; = n"Y/2Y;. Let N, = n? and partition the
real line by the points

—00 =Tpg < Tpy <+ 1+ < Tpy, =00
such that H(z,;) =i/N,,i =0,1,...,N,. For each z € (Tpry Tnrt1), We have
|H(z) = H(z.)| S NJY, i=rr+1. (2.4)
Then, we can write |I',(z, b)| < T, (z, b) + Tna(z, b) + Ta3(z, b), where

Lai(z,0) = sup |n~/2 Z[F(sj + 2, + OW,_;)

i=r,r+l j=1

—H(zn; +bW,_;) + H(zn) — F(e; + z,:)]|

Laa(z,0) = sup |n"Y2Y [H(z,; + BW;_1) — H(z + bW, _,)]|
i=r,r+1 =1
L.3(z,b) = sup1 [n=1/2 Z[F(EJ' + zni) — H(z,;) + H(z) — F(e; + z)]|.
v i=r,r+ j=1

By the mean value theorem, (2.1) and (2.4), we have that SUP, 1<k Tna(z,b) =
op(1). To deal with T',5(z, b), use Taylor’s series expansion to get

H(zn; + W, 1) = H(z,:) + bW,_,H' (zn:) + 27180 W2  H'(())

J
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and
H(z +bW,_,) = H(z) + bW, H' (z) + 27 0*W H' ({)),

where (; and fj are numbers between t,;, T,; + bW;_1 and z, z + bW;_;,
respectively. By simple algebras, we can see that sup, <« T.2(z,b) = op(1).
Now, it remains to deal with I.1(z,b). Define

n

Sn = (3 IWjma| < n'/°L, max [Wioa| < I).

=1

For any 7> 0, we can choose L > 0 such that P(S¢) < n for all n. Note that
for A > 0,

P( sup |Tn(z,b)| > A) < P( sup IThi(z, b)) > A, 8.) +n

z,Ibl<K z,|bI<K

< P| sup [n7Y2) di(zar,b) > A, Sn |+,
0<r<Nn

pl<k =1
where
d;(z,b) = F(e; + = +dW;_1) — H(z + bW,_1) + H(z) — F(¢; + ).

Hence, it suffices to show that

sup 23" ds (e, b)|I(Sn) = 0r(1). (2.5)
<K i=1

For this prupose, partition the interval [-K, K ] by the points b, = =K +
9K s/n?,s =0,...,n% and let w}, = sup,, <,cs,,, bW; and wj, = infy, <p<s, ., OW;.
For each b € [b,, by4+1),

di(z,y) < Fle;+z+wl,,)~H+wi,,)+HE@) - F(+e)
+ H(z+ w;.L_l’,) — H(z +bW;_4),

and similarly,

di(z,y) > Fle;+e+wi,,)—HE+wi,,)+F@)-H(;+2)
+ H(z+wj_y,)— F(z +dW;-1).



On the Conditional Tolerance Probability in Time Series Models 413

Since on S,
|H(z +wi_;,) - H(z +bW,_,)] < sup |H ()| (bes1 — b,) max |Z;,|

< n2M for some M > 0,

and the above also holds for H(z + w;_y,) — H(z + yW,_,), the arguments
in (2.5) is bounded by I'?; + I, + n=3/2M  where

n
F:1 = 0328 n1/2 Zdj(znr’ w;-—l,a) I(Sn)
O_S:—Sng i=1

and
I'’, = sup ,n"”zZdj(xn,,w;_l,,),I(Sn).
Jj=1

0<r<Ng
05151:2

Here, we only deal with I}, since the other case can be handled in a
similar way. Note that w;: is F; := 0(8;,€;,% < j)-measurable. Let

J
ej := €;(Z,, w;-—l,a) = dj(znr?wj—l,a)I(Z Wil < nl/zL)'
i=1

Then {e;, F;;j > 1} is a sequence of martingale differences with le;] <1 and
=1 E(e2|F;_1) < n'/26 for some 6 > 0, since

D E(ENFi) < Y E(dEF)
i=1 j=1

J
S [H(@ar +w}y,) = H(za )13 Wiea| < nV2L)

i=1

J
< sup|H (z)|lw;, JIQ [Wisy] < n'/2L)

i=1

< n'2KLsup|H (z)).
Due to Lemma 2.3, we have for all A > 0,

P(]Y el > n'%)) < 2exp{—nA?/(n'/20 + n'/2)/3)}.

i=1
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Since
P(e; # dj(xm,wf_ly,) for some j < non S,)

< P IWjoal>n'’L on S,) =0,
i=1
we have for all A > 0,
P(T%, > ) € 2(n* + 1)(N, + 1) exp{—n'/22%/(8 + A/3)} — 0,

which asserts (2.5). This completes the proof. O

The following lemma can be proved by the arguments of Billingsley (1968,
P. 106-107).

Lemma 2.4. Suppose that {5,} is a sequence of positive random variables
decaying to 0 in probability. Then, provided that sup,{|F (z)|+|F" (z)|} < o0
holds, we have

sup |n7'/2 i{f(a.- < z)— F(z)+ F(y) — I(6; < y)} =op(1).

|z—y|<nn i=1

The following lemma can be found in Boldin (1982).
Lemma 2.5. Assume that sup {|F (z)| + |F"(z)|} < co. Then,

sup |n™ V2 S {I(6; < z +bn7M?X, 1)

i=1

— F(z+ b Y2X,.))+ F(z)-I(6: < o)} = op(1).

Proof of Theorem 2.1. Observe that

I(Si ~éj<z) = I6i—¢e;j<z+ (b —a+7 — Fu)(Xic1 — 1) (2.6)
+(8 = Bu)Yjo1 + (X — p)(1 = Gn — Fa)).

Put Z; = n"V/?3(X;—p) and W; = n~1/2Y;. Since a,, B., % are n'/2—consistent
estimators, in view of (2.6), we only need to show that for any K > 0,

n2
sup |n~ 3 Y Air(z,a,b)] =0p(1), k=12 3,4,

z,Ja|<K,|b]SK ij=1
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where

Aiji(z,a,b) = I(6; <z tejtazZi  +0W, 1) - F(z+e; +aZi_ + bW;_1)
+F(z+e; +bW; 1) - I(5; < z +e; +b0W;_,)

Aija(2,0,8) = I8 <z+e;+bW,_1) - F(z +¢,6W,_,)
+F(z+e;)—I(6; <z +¢,)

Aij3(z,a,b) = F(z+e;+aZi,+ bW;_ 1) — H(z +aZ;_; + bW;_1)
+H(z +aZ;_) - F(z + €i+aZ;, 1)

Aija(z,0,0) = F(zr+e;+aZiy) - H(z+aZ;_,)+ H(z) - F(z +¢;).

Note that

nz
sup  [n"%2 3" A (z,a,b)|
z,Ja|<K,|b|]<K i,j=1

< sup |n~ /2 Y {16 <z + aZi_1) — F(z +aZ;_y) + F(z) — I(6; < z)},

which goes to 0 due to Lemma 2.5. On the other band, we have that

n2
sup |n=3/2 Z Aija(z, a, b))
ij=1

3!'“’51(»'“51(
< sup In—l/z E{I(5i <z)- F(“’) + F(y) —I(s; < y)}l,
lz=y|<K max; < j<n [W;] i=1

which goes to 0 by Lemma 2.4. Further, we have

n2
sup |n=3/2 Z Aija(z,a,b)] = op(1)

z,|e| <K, |b|<K ij=1

by Lemma, 2.2, and

ﬂ2
sup  [n"Y% 3" A,i4(2,a,b)| = o0p(1)
T,|a|<K,|b|<K i,j=1

by Lemma 2.1. Therefore, p,(¢,) — H(,) = Op(n~'%). Since H(£,) — p, =
Op(n~1/2), the theorem is established. ]
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