• Title/Summary/Keyword: manipulators

Search Result 765, Processing Time 0.036 seconds

Backstepping Control of Robot Manipulators Driven by Induction Motors Using Neural Networks

  • Kim, Jung-Wook;Kim, Dong-Hun;Kim, Hong-Pil;Yang, Hai-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.5-37
    • /
    • 2001
  • A robust control for robot manipulators actuated by induction motors using neural networks(NNs) is considered. The control is designed to compensate for nonlinear dynamics associated with the mechanical subsystem and the electrical subsystems only with the measurements of link position, link velocity and stator winding currents. Two-layer NNs are used to approximate unknown functions occurring from parameter variation during backstepping design process. Specially, through the use of nonlinear observers for rotor flux, observed backstepping controller is designed to achieve uniform ultimately bounded link position tracking of the given reference signal ...

  • PDF

Robust Predictive Control of Robot Manipulator with The Bound Estimation

  • Kim, Jung-Kwan;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.5-155
    • /
    • 2001
  • The robust predictive control law which use the bound estimation is proposed for uncertain robot manipulators. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about model, it´s an important tend to design a robust control law that will guarantee the desired performance of the manipulator under uncertain elements. In the preceeding work, the robust predictive control law was proposed. In this work, we propose a class of robust predictive control of manipulators with the bound estimate technique and fe stability based on Lyapunov function is presented.

  • PDF

A Robust Control with The Bound Function of Neural Network Structure for Robot Manipulator

  • Chul, Ha-In;Chul, Han-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.113.1-113
    • /
    • 2001
  • The robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The neural network structure presents the bound function and does not need the concave property of the bound function, The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulators.

  • PDF

Manipulability Ellipsoids of Wheeled Mobile Manipulators

  • Kim, Sung-Bok;Lee, Jae-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.120.2-120
    • /
    • 2001
  • This paper presents the analysis on the manipulability of a wheeled mobile manipulator which consists of a wheeled mobile platform and a manipulator atop. It is assumed that the mobile platform is a deficient system and the manipulator is a nonredundant system, but the mobile manipulators as a whole is a redundant system. First Yoshikawa´s definition of the manipulability ellipsoid for a redundant/nonredundant system is extended to a deficient system. Second, the effects of the nonholonomic constraint of the mobile platform and the location the mobile platform and the manipulator is analyzed.

  • PDF

Control Design for Flexible Joint Manipulators with Mismatched Uncertainty : Adaptive Robust Scheme

  • Kim, Dong-Hwa
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-43
    • /
    • 1999
  • Adaptive robust control scheme is introduced for flexible joint manipulator with nonlinearities and uncertainties. The system does not satisfy the matching condition due to insufficient actuators for each node. The control only relies on the assumption that the bound of uncertainty exists. Thus, the bounded value does not need to be known a prior. The control utilizes the update law by estimating the bound of the uncertainties. The control scheme uses the backstepping method and constructs a state transformation. Also, stability analysis is done for both transformed system and original system.

  • PDF

Adaptive control of flexible joint manipulators based on the singular perturbation theory (특이 섭동 이론에 의한 유연성 관절 매니퓰레이터의 적응제어)

  • 김응석;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.7-11
    • /
    • 1991
  • The adaptive control of flexible joint manipulator is the focus of this paper. The full order flexible joint manipulator dynamic system does not allow the determination of a feedback linearization control as for rigid manipulators. This drawback is overcome by a model order reduction based on a singular perturbation strategy. The full order flexible joint manipulator dynamic model is adopted for derivation of the adaptive control law to damp out the elastic oscillations at the joints. It is shown that the joint position error will converge to zero asymptotically and that other signals remain bounded without precise knowledge of parameters of the manipulator and its joint flexibility.

  • PDF

A study on the maneuverbility of robot manipulators (로봇 매니플레이터의 기동성에 관한 연구)

  • 최진욱;황원걸;나승유
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.492-496
    • /
    • 1988
  • Usually the first three joint variables (major link) and the next three joint variables (minor link) are used to determine the position and the orientation, respectively, of 6 degrees-of-freedom robot manipulators. In this paper, the Jacobians of 20 major links and 6 minor links are calculated to find the positional maneuverability matrices and orientational maneuverability matrices. Then the kinematic characteristics of the major and minor links are examined. Also we gave the measures of maneuverability and the controllability of the links for the figure of merits of robot manipulator design.

  • PDF

An improved rubust hybrid control for uncertain robot manipulators (불확실 로봇이 개선된 견실 하이브리드 제어)

  • 김재홍;한명철;하인철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.161-164
    • /
    • 2000
  • An improved robust hybrid control law is proposed This law uses the separated bounding function: so uncertainties of each axis does not affect the others. Also, this law uses the separated $\varepsilon$, so we can take different $\varepsilon$ for each axis This law guarantees the practical stability in sense of Lyapunov. Simulation was performed to validate this law using a four-axis SCARA type robot manipulator.

  • PDF

Adaptive control of flexible joint robot manipulators (유연성 관절 로봇 매니퓰레이터 적응 제어)

  • 신진호;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.260-265
    • /
    • 1992
  • This paper presents an adaptive control scheme for flexible joint robot manipulators. This control scheme is based on the Lyapunov direct method with the arm energy-based Lyapunov function. The proposed adaptive control scheme uses only the position and velocity feedback of link and motor shaft. The adaptive control system of flexible joint robots is asymptotically stable regardless of the joint flexibility value. Therefore, the assumption of weak joint ealsticity is not needed. Also, joint flexibility value is unknown. Simulation results are presented to show the feasibility of the proposed adaptive control scheme.

  • PDF

A stable composite controller design for flexible joint robot manipulators (탄성관절을 갖는 로보트 매니퓰레이터의 안정한 합성제어기 설계)

  • 이만형;백운보;이권순;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.266-271
    • /
    • 1992
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate the additional stabilizing control law with sliding property. The singularly perturbated models include inertia moments functions of the deformations of actuator. The newly defined fast controller variable is computed from the corrected reduced-order model without additional computational loads. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than conventional one, and especially effective for the manipulator with high joint-flexibilities.

  • PDF