• Title/Summary/Keyword: making techniques

Search Result 1,309, Processing Time 0.023 seconds

Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls

  • Tarque, Nicola;Salsavilca, Jhoselyn;Yacila, Jhair;Camata, Guido
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • In Peru, construction of dwellings using confined masonry walls (CM) has a high percentage of acceptance within many sectors of the population. It is estimated that only in Lima, 80% of the constructions use CM and at least 70% of these are informal constructions. This mean that they are built without proper technical advice and generally have a high seismic vulnerability. One way to reduce this vulnerability is by reinforcing the walls. However, despite the existence of some reinforcement methods in the market, not all of them can be applied massively because there are other parameters to take into account, as economical, criteria for seismic improvement, reinforcement ratio, etc. Therefore, in this paper the feasibility of using five reinforcement techniques has been studied and compared. These reinforcements are: welded mesh (WM), glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP), steel bar wire mesh (CSM), steel reinforced grout (SRG). The Multi-Criteria Decision Making (MCDM) method can be useful to evaluate the most optimal strengthening technique for a fast, effective and massive use plan in Peru. The results of using MCDM with 10 criteria indicate that the Carbon Fiber Reinforced Polymer (CFRP) and Steel Reinforced Grout (SRG) methods are the most suitable for a massive reinforcement application in Lima.

A Methodology for Customer Core Requirement Analysis by Using Text Mining : Focused on Chinese Online Cosmetics Market (텍스트 마이닝을 활용한 사용자 핵심 요구사항 분석 방법론 : 중국 온라인 화장품 시장을 중심으로)

  • Shin, Yoon Sig;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.66-77
    • /
    • 2021
  • Companies widely use survey to identify customer requirements, but the survey has some problems. First of all, the response is passive due to pre-designed questionnaire by companies which are the surveyor. Second, the surveyor needs to have good preliminary knowledge to improve the quality of the survey. On the other hand, text mining is an excellent way to compensate for the limitations of surveys. Recently, the importance of online review is steadily grown, and the enormous amount of text data has increased as Internet usage higher. Also, a technique to extract high-quality information from text data called Text Mining is improving. However, previous studies tend to focus on improving the accuracy of individual analytics techniques. This study proposes the methodology by combining several text mining techniques and has mainly three contributions. Firstly, able to extract information from text data without a preliminary design of the surveyor. Secondly, no need for prior knowledge to extract information. Lastly, this method provides quantitative sentiment score that can be used in decision-making.

Using Data Mining Techniques in Building a Model to Determine the Factors Affecting Academic Data for Undergraduate Students

  • Nafie, Faisal Mohammed;Hamed, Abdelmoneim Ali Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.306-312
    • /
    • 2021
  • The main goal of higher education institutions is to present a high level of quality education to its students. This study uses data mining techniques to extract educational data from cumulative databases and used them to make the right decisions. This paper also aims to find the factors affecting students' academic performance in Majmaah University, KSA, during 2010 - 2017 period. The study utilized a sample of 6,158 students enrolled from two colleges, males and females. The results showed a high percentage of stumbling and dismissed between graduate and regular students where more than 62.5% failed to follow the plan. Only 2% of students scored distinction during their study of all graduated since their grade point average, secondary level, was statistically significant, where p<0.05. Dismissed percentage was higher among males. These results promoted some recommendations in which decision-makers could take them in considerations for better improvement of academic achievements: including of specialized programs to follow-up in regards to stumbling and failure. Utilization of different communication tools are needed to activate academic advisory for dismiss and dropout evaluation.

Audio Steganography Method Using Least Significant Bit (LSB) Encoding Technique

  • Alarood, Alaa Abdulsalm;Alghamdi, Ahmed Mohammed;Alzahrani, Ahmed Omar;Alzahrani, Abdulrahman;Alsolami, Eesa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.427-442
    • /
    • 2022
  • MP3 is one of the most widely used file formats for encoding and representing audio data. One of the reasons for this popularity is their significant ability to reduce audio file sizes in comparison to other encoding techniques. Additionally, other reasons also include ease of implementation, its availability and good technical support. Steganography is the art of shielding the communication between two parties from the eyes of attackers. In steganography, a secret message in the form of a copyright mark, concealed communication, or serial number can be embedded in an innocuous file (e.g., computer code, video film, or audio recording), making it impossible for the wrong party to access the hidden message during the exchange of data. This paper describes a new steganography algorithm for encoding secret messages in MP3 audio files using an improved least significant bit (LSB) technique with high embedding capacity. Test results obtained shows that the efficiency of this technique is higher compared to other LSB techniques.

Towards Improving Causality Mining using BERT with Multi-level Feature Networks

  • Ali, Wajid;Zuo, Wanli;Ali, Rahman;Rahman, Gohar;Zuo, Xianglin;Ullah, Inam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3230-3255
    • /
    • 2022
  • Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.

Damage detection of composite materials via IR thermography and electrical resistance measurement: A review

  • Park, Kundo;Lee, Junhyeong;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.563-583
    • /
    • 2021
  • Composite materials, composed of multiple constituent materials with dissimilar properties, are actively adopted in a wide range of industrial sectors due to their remarkable strength-to-weight and stiffness-to-weight ratio. Nevertheless, the failure mechanism of composite materials is highly complicated due to their sophisticated microstructure, making it much harder to predict their residual material lives in real life applications. A promising solution for this safety issue is structural damage detection. In the present paper, damage detection of composite material via electrical resistance-based technique and infrared thermography is reviewed. The operating principles of the two damage detection methodologies are introduced, and some research advances of each techniques are covered. The advancement of IR thermography-based non-destructive technique (NDT) including optical thermography, laser thermography and eddy current thermography will be reported, as well as the electrical impedance tomography (EIT) which is a technology increasingly drawing attentions in the field of electrical resistance-based damage detection. A brief comparison of the two methodologies based on each of their strengths and limitations is carried out, and a recent research update regarding the coupling of the two techniques for improved damage detection in composite materials will be discussed.

A Study of Lightening SRGAN Using Knowledge Distillation (지식증류 기법을 사용한 SRGAN 경량화 연구)

  • Lee, Yeojin;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1598-1605
    • /
    • 2021
  • Recently, convolutional neural networks (CNNs) have been widely used with excellent performance in various computer vision fields, including super-resolution (SR). However, CNN is computationally intensive and requires a lot of memory, making it difficult to apply to limited hardware resources such as mobile or Internet of Things devices. To solve these limitations, network lightening studies have been actively conducted to reduce the depth or size of pre-trained deep CNN models while maintaining their performance as much as possible. This paper aims to lighten the SR CNN model, SRGAN, using the knowledge distillation among network lightening technologies; thus, it proposes four techniques with different methods of transferring the knowledge of the teacher network to the student network and presents experiments to compare and analyze the performance of each technique. In our experimental results, it was confirmed through quantitative and qualitative evaluation indicators that student networks with knowledge transfer performed better than those without knowledge transfer, and among the four knowledge transfer techniques, the technique of conducting adversarial learning after transferring knowledge from the teacher generator to the student generator showed the best performance.

Visualization of Motor Unit Activities in a Single-channel Surface EMG Signal

  • Hidetoshi Nagai
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.211-220
    • /
    • 2023
  • Surface electromyography (sEMG) is a noninvasive method used to capture electrically muscle activity, which can be easily measured even during exercise. The basic unit of muscle activity is the motor unit, and because an sEMG signal is a superposition of motor unit action potentials, analysis of muscle activity using sEMG should ideally be done from the perspective of motor unit activity. However, conventional techniques can only evaluate sEMG signals based on abstract signal features, such as root-mean-square (RMS) and mean-power-frequency (MPF), and cannot detect individual motor unit activities from an sEMG signal. On the other hand, needle EMG can only capture the activity of a few local motor units, making it extremely difficult to grasp the activity of the entire muscle. Therefore, in this study, a method to visualize the activities of motor units in a single-channel sEMG signal by relocating wavelet coefficients obtained by redundant discrete wavelet analysis is proposed. The information obtained through this method resides in between the information obtained through needle EMG and the information obtained through sEMG using conventional techniques.

An Exploratory Study on the Prediction of Business Survey Index Using Data Mining (기업경기실사지수 예측에 대한 탐색적 연구: 데이터 마이닝을 이용하여)

  • Kyungbo Park;Mi Ryang Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.4
    • /
    • pp.123-140
    • /
    • 2023
  • In recent times, the global economy has been subject to increasing volatility, which has made it considerably more difficult to accurately predict economic indicators compared to previous periods. In response to this challenge, the present study conducts an exploratory investigation that aims to predict the Business Survey Index (BSI) by leveraging data mining techniques on both structured and unstructured data sources. For the structured data, we have collected information regarding foreign, domestic, and industrial conditions, while the unstructured data consists of content extracted from newspaper articles. By employing an extensive set of 44 distinct data mining techniques, our research strives to enhance the BSI prediction accuracy and provide valuable insights. The results of our analysis demonstrate that the highest predictive power was attained when using data exclusively from the t-1 period. Interestingly, this suggests that previous timeframes play a vital role in forecasting the BSI effectively. The findings of this study hold significant implications for economic decision-makers, as they will not only facilitate better-informed decisions but also serve as a robust foundation for predicting a wide range of other economic indicators. By improving the prediction of crucial economic metrics, this study ultimately aims to contribute to the overall efficacy of economic policy-making and decision processes.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.