DOI QR코드

DOI QR Code

Damage detection of composite materials via IR thermography and electrical resistance measurement: A review

  • Park, Kundo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Junhyeong (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ryu, Seunghwa (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2020.06.05
  • 심사 : 2021.10.14
  • 발행 : 2021.12.10

초록

Composite materials, composed of multiple constituent materials with dissimilar properties, are actively adopted in a wide range of industrial sectors due to their remarkable strength-to-weight and stiffness-to-weight ratio. Nevertheless, the failure mechanism of composite materials is highly complicated due to their sophisticated microstructure, making it much harder to predict their residual material lives in real life applications. A promising solution for this safety issue is structural damage detection. In the present paper, damage detection of composite material via electrical resistance-based technique and infrared thermography is reviewed. The operating principles of the two damage detection methodologies are introduced, and some research advances of each techniques are covered. The advancement of IR thermography-based non-destructive technique (NDT) including optical thermography, laser thermography and eddy current thermography will be reported, as well as the electrical impedance tomography (EIT) which is a technology increasingly drawing attentions in the field of electrical resistance-based damage detection. A brief comparison of the two methodologies based on each of their strengths and limitations is carried out, and a recent research update regarding the coupling of the two techniques for improved damage detection in composite materials will be discussed.

키워드

과제정보

This work was supported by the Basic Science Research Program (2019R1A2C4070690) through the National Research Foundation of Korea (NRF).

참고문헌

  1. Abdo, M. (2014), Structural Health Monitoring, History, Applications and Future, A Review Book, Open Science.
  2. Adler, A. and Lionheart, W.R. (2006), "Uses and abuses of EIDORS: An extensible software base for EIT", Physiolog. Measure., 27(5), S25. https://doi.org/10.1088/0967-3334/27/5/S03
  3. Ajayan, P.M., Schadler, L.S. and Braun, P.V. (2006), Nanocomposite Science and Technology, John Wiley & Sons.
  4. Al-Hamadani, Y.A.J., Chu, K.H., Son, A., Heo, J., Her, N., Jang, M., Park, C.M. and Yoon, Y. (2015), "Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review", Separat. Purific. Technol., 156, 861-874. https://doi.org/10.1016/j.seppur.2015.11.002.
  5. Aranburu, N., Otaegi, I. and Guerrica-Echevarria, G. (2019), "Using an ionic liquid to reduce the electrical percolation threshold in biobased thermoplastic polyurethane/graphene nanocomposites", Polym., 11(3), 435. https://doi.org/10.3390/polym11030435.
  6. Badr, J., Fargier, Y., Palma-Lopes, S., Deby, F., Balayssac, J.P., Delepine-Lesoille, S., Cottineau, L.M. and Villain, G. (2019), "Design and validation of a multi-electrode embedded sensor to monitor resistivity profiles over depth in concrete", Constr. Build. Mater., 223, 310-321. https://doi.org/10.1016/j.conbuildmat.2019.06.226.
  7. Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J. and Jayakumar, T. (2013), "Infrared thermography for condition monitoring-A review", Infrar. Phys. Technol., 60, 35-55. https://doi.org/10.1016/j.infrared.2013.03.006.
  8. Balaji, R. and Sasikumar, M. (2017), "Graphene based strain and damage prediction system for polymer composites", Compos. Part A: Appl. Sci. Manuf., 103, 48-59. https://doi.org/10.1016/j.compositesa.2017.09.006.
  9. Baltopoulos, A., Polydorides, N., Pambaguian, L., Vavouliotis, A. and Kostopoulos, V. (2015), "Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites", Compos. Part B: Eng., 76, 149-158. https://doi.org/10.1016/j.compositesb.2015.02.022.
  10. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D. and Rinzler, A.G. (1999), "Carbon nanotube actuators", Sci., 284(5418), 1340-1344. https://doi.org/10.1126/science.284.5418.1340.
  11. Bauhofer, W. and Kovacs, J.Z. (2009), "A review and analysis of electrical percolation in carbon nanotube polymer composites", Compos. Sci. Technol., 69(10), 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018.
  12. Beaumont, P.W. (1979), "Fracture mechanisms in fibrous composites", Fracture Mechanics, Pergamon.
  13. Breitenstein, O. and Langenkamp, M. (2003), "Lock-in thermography", Basics and Use for Functional Diagnostics of Electronics Components, Springer.
  14. Cerniglia, D. and Montinaro, N. (2018), "Defect detection in additively manufactured components: Laser ultrasound and laser thermography comparison", Procedia Struct. Integ., 8, 154-162. https://doi.org/10.1016/j.prostr.2017.12.016.
  15. Chang, F.K. (1998), "Structural health monitoring: A summary report on the first stanford workshop on structural health monitoring, September 18-20, 1997", Stanford University, CA.
  16. Chang, L., Friedrich, K., Ye, L. and Toro, P. (2009), "Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites", J. Mater. Sci., 44(15), 4003-4012. https://doi.org/10.1007/s10853-009-3551-3
  17. Chen, C.H. (2007), Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, World Scientific.
  18. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998), "Solution properties of single-walled carbon nanotubes", Sci., 282(5386), 95-98. https://doi.org/10.1126/science.282.5386.95.
  19. Cheney, M., Isaacson, D., Newell, J.C., Simske, S. and Goble, J. (1990), "NOSER: An algorithm for solving the inverse conductivity problem", Int. J. Imag. Syst. Technol., 2(2), 66-75. https://doi.org/10.1002/ima.1850020203.
  20. Choudhary, N., Hwang, S. and Choi, W. (2014), "Carbon nanomaterials: A review", Handbook of Nanomaterials Properties, 709-769.
  21. Christensen, R.M. (2012), Mechanics of Composite Materials. Courier Corporation.
  22. Chung, D.D. (2010), Composite Materials: Science and Applications, Springer Science & Business Media.
  23. Clyne, T. and Hull, D. (2019), An Introduction to Composite Materials, Cambridge University Press.
  24. Coleman, J.N., Khan, U. and Gun'ko, Y.K. (2006), "Mechanical reinforcement of polymers using carbon nanotubes", Adv. Mater., 18(6), 689-706. https://doi.org/10.1002/adma.200501851.
  25. Colombo, C., Libonati, F., Pezzani, F., Salerno, A., & Vergani, L. (2011), "Fatigue behaviour of a GFRP laminate by thermographic measurements", Procedia Eng., 10, 3518-3527. https://doi.org/10.1016/j.proeng.2011.04.579.
  26. Colombo, C., Libonati, F. and Vergani, L. (2012), "Fatigue damage in GFRP", Int. J. Struct. Integ., 3(4), 424-440. https://doi.org/10.1108/17579861211281218.
  27. Dai, H., Gallo, G.J., Schumacher, T. and Thostenson, E.T. (2016a), "A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography", J. Nondestruct. Eval., 35(2), 26. https://doi.org/10.1007/s10921-016-0341-0.
  28. Dai, H., Gallo, G.J., Schumacher, T. and Thostenson, E.T. (2016b), "A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography", J. Nondestruct. Eval., 35(2), 1-15. https://doi.org/10.1007/s10921-016-0341-0.
  29. Dattoma, V., Marcuccio, R., Pappalettere, C. and Smith, G.M. (2001), "Thermographic investigation of sandwich structure made of composite material", NDT E Int., 34(8), 515-520. https://doi.org/10.1016/S0963-8695(00)00082-7.
  30. Douville, N.J., Tung, Y.C., Li, R., Wang, J.D., El-Sayed, M.E.H. and Takayama, S. (2010), "Fabrication of two-layered channel system with embedded electrodes to measure resistance across epithelial and endothelial barriers", Anal. Chem., 82(6), 2505-2511. https://doi.org/10.1021/ac9029345.
  31. Dresselhaus, G., Dresselhaus, M.S. and Saito, R. (1998), Physical Properties of Carbon Nanotubes, World scientific.
  32. Eldar, Y.C. and Oppenheim, A.V. (2003), "Covariance shaping least-squares estimation", IEEE Tran. Signal Pr., 51(3), 686-697. https://doi.org/10.1109/TSP.2002.808125.
  33. Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H. and Thomas, R.L. (2000). "IR imaging of cracks excited by an ultrasonic pulse", Thermosense XXII, 4020, 182-185, International Society for Optics and Photonics, March.
  34. Fish, J. (2011), "Multiscale modeling and simulation of composite materials and structures", Eds. R. de Borst and E. Ramm, Multiscale Methods in Computational Mechanics: Progress and Accomplishments, 215-231, Springer, Netherlands.
  35. Gao, L., Chou, T.W., Thostenson, E.T. and Zhang, Z. (2010), "A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes", Carbon, 48(13), 3788-3794. https://doi.org/10.1016/j.carbon.2010.06.041.
  36. Gao, L., Chou, T.W., Thostenson, E.T., Zhang, Z. and Coulaud, M. (2011), "In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks", Carbon, 49(10), 3382-3385. https://doi.org/10.1016/j.carbon.2011.04.003.
  37. Gao, L., Thostenson, E.T., Zhang, Z. and Chou, T.W. (2009), "Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites", Carbon, 47(5), 1381-1388. https://doi.org/10.1016/j.carbon.2009.01.030.
  38. Ghaednia, H., Owens, C.E., Keiderling, L.E., Varadarajan, K.M., Hart, A.J., Schwab, J.H. and Tallman, T.T. (2020), "Is machine learning able to detect and classify failure in piezoresistive bone cement based on electrical signals?", arXiv preprint arXiv:2010, 12147.
  39. Ghaednia, H., Owens, C.E., Roberts, R., Tallman, T.N., Hart, A.J. and Varadarajan, K.M. (2020), "Interfacial load monitoring and failure detection in total joint replacements via piezoresistive bone cement and electrical impedance tomography", Smart Mater. Struct., 29(8), 085039. https://doi.org/10.1088/1361-665x/ab874f
  40. Giordano, M., Calabro, A., Esposito, C., D'Amore, A. and Nicolais, L. (1998), "An acoustic-emission characterization of the failure modes in polymer-composite materials", Compos. Sci. Technol., 58(12), 1923-1928. https://doi.org/10.1016/S0266-3538(98)00013-X.
  41. Girifalco, L.A., Hodak, M. and Lee, R.S. (2000), "Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential", Phys. Rev. B, 62(19), 13104. https://doi.org/10.1103/PhysRevB.62.13104.
  42. Gleiter, A., Riegert, G., Zweschper, T. and Busse, G. (2007), "Ultrasound lock-in thermography for advanced depth resolved defect selective imaging", Insight-Non-Destruct. Test. Condit. Monit., 49(5), 272. https://doi.org/10.1784/INSI.2007.49.5.272.
  43. Gopi, J.A., Patel, S.K., Chandra, A.K. and Tripathy, D.K. (2011), "SBR-clay-carbon black hybrid nanocomposites for tire tread application", J. Polym. Res., 18(6), 1625-1634. https://doi.org/10.1007/s10965-011-9567-9.
  44. Groo, L., Nasser, J., Inman, D. and Sodano, H. (2021), "Laser induced graphene for in situ damage sensing in aramid fiber reinforced composites", Compos. Sci. Technol., 201, 108541. https://doi.org/10.1016/j.compscitech.2020.108541.
  45. Groo, L., Nasser, J., Zhang, L., Steinke, K., Inman, D. and Sodano, H. (2020), "Laser induced graphene in fiberglass-reinforced composites for strain and damage sensing", Compos. Sci. Technol., 199, 108367. https://doi.org/10.1016/j.compscitech.2020.108367.
  46. Guillaumat, L., Batsale, J.C. and Mourand, D. (2004), "Real time infra-red image processing for the detection of delamination in composite plates", Compos. Part A: Appl. Sci. Manuf., 35(7), 939-944. https://doi.org/10.1016/j.compositesa.2004.01.021.
  47. Guo, X. and Vavilov, V. (2013), "Crack detection in aluminum parts by using ultrasound-excited infrared thermography", Infrar. Phys. Technol., 61, 149-156. https://doi.org/10.1016/j.infrared.2013.08.003
  48. Hallaji, M. and Pour-Ghaz, M. (2014), "A new sensing skin for qualitative damage detection in concrete elements: Rapid difference imaging with electrical resistance tomography", NDT E Int., 68, 13-21. https://doi.org/10.1016/j.ndteint.2014.07.006.
  49. Hallaji, M., Seppanen, A. and Pour-Ghaz, M. (2014), "Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete", Smart Mater. Struct., 23(8), 085001. https://doi.org/10.1088/0964-1726/23/8/085001.
  50. Hamilton, S.J., Hanninen, A., Hauptmann, A. and Kolehmainen, V. (2019), "Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT)", Physiolog. Measure., 40(7), 074002. https://doi.org/10.1088/1361-6579/ab21b2.
  51. Hamilton, S.J. and Hauptmann, A. (2018), "Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks", IEEE Tran. Med. Imag., 37(10), 2367-2377. https://doi.org/10.1109/TMI.2018.2828303.
  52. Han, X., Li, W., Zeng, Z., Favro, L. and Thomas, R. (2002), "Acoustic chaos and sonic infrared imaging", Appl. Phys. Lett., 81(17), 3188-3190. https://doi.org/10.1063/1.1516240.
  53. Hao, B., Ma, Q., Yang, S., Mader, E. and Ma, P.C. (2016), "Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating", Compos. Sci. Technol., 129, 38-45. https://doi.org/10.1016/j.compscitech.2016.04.012.
  54. Harizi, W., Chaki, S., Bourse, G. and Ourak, M. (2014), "Mechanical damage assessment of Glass Fiber-Reinforced Polymer composites using passive infrared thermography", Compos. Part B: Eng., 59, 74-79. https://doi.org/10.1016/j.compositesb.2013.11.021.
  55. Harris, B. (2003), Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics, Woodhead Publishing.
  56. He, Z., Wang, H., He, Y., Zhang, G., Wang, J., Zou, G. and Chady, T. (2019), "Joint scanning laser thermography defect detection method for carbon fiber reinforced polymer", IEEE Sensor. J., 20(1), 328-336. https://doi.org/10.1109/JSEN.2019.2941077.
  57. Holzinger, M., Steinmetz, J., Samaille, D., Glerup, M., Paillet, M., Bernier, P., Ley, L. and Graupner, R. (2004), "[2+ 1] cycloaddition for cross-linking SWCNTs", Carbon, 42(5-6), 941-947. https://doi.org/10.1016/j.carbon.2003.12.019.
  58. Hou, T.C., Loh, K.J. and Lynch, J.P. (2007), "Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications", Nanotechnol., 18(31), 315501. https://doi.org/10.1088/0957-4484/18/31/315501.
  59. Hou, T.C. and Lynch, J.P. (2009), "Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures", J. Intel. Mater. Syst. Struct., 20(11), 1363-1379. https://doi.org/10.1177/1045389X08096052.
  60. Huang, J.C. (2002), "Carbon black filled conducting polymers and polymer blends", Adv. Polym. Technol.: J. Polym. Proc. Inst., 21(4), 299-313. https://doi.org/10.1002/adv.10025.
  61. Huth, S., Breitenstein, O., Huber, A., Dantz, D., Lambert, U. and Altmann, F. (2002), "Lock-in IR-thermography-A novel tool for material and device characterization. diffusion and defect data part B solid state phenomena", Diffusion and Defect Data Part B Solid State Phenomena, 741-746, Scitec Publications, January.
  62. Jin, F.L., Li, X. and Park, S.J. (2015), "Synthesis and application of epoxy resins: A review", J. Indus. Eng. Chem., 29, 1-11. https://doi.org/10.1016/j.jiec.2015.03.026.
  63. Jo, Y., Lee, C. and Yoo, J.H. (2013), "Study on applicability of passive infrared thermography analysis for blistering detection of stone cultural heritage", J. Korean Conserv. Sci. Cult. Proper., 29(1), 55-67. https://doi.org/10.12654/JCS.2013.29.1.06.
  64. Kaipio, J.P., Kolehmainen, V., Vauhkonen, M. and Somersalo, E. (1999), "Inverse problems with structural prior information", Invers. Prob., 15(3), 713. https://doi.org/10.1088/0266-5611/15/3/306
  65. Kaplan, H. (2007), Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Vol. 75, SPIE Press.
  66. Kessler, S.S. (2002), "Piezoelectric-based in-situ damage detection of composite materials for structural health monitoring systems", Massachusetts Institute of Technology.
  67. Kim, K.S., Bae, D.J., Kim, J.R., Park, K.A., Lim, S.C., Kim, J.J., Choi, W.B., Park, C.Y. and Lee, Y.H. (2002), "Modification of electronic structures of a carbon nanotube by hydrogen functionalization", Adv. Mater., 14(24), 1818-1821. https://doi.org/10.1002/adma.200290008.
  68. Ko, J. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021.
  69. Ku-Herrera, J.J., Pacheco-Salazar, O.F., Rios-Soberanis, C.R., Dominguez-Rodriguez, G. and Aviles, F. (2016), "Self-sensing of damage progression in unidirectional multiscale hierarchical composites subjected to cyclic tensile loading", Sensor., 16(3), 400. https://doi.org/10.3390/s16030400.
  70. Kumar, S.P., Sriraam, N., Benakop, P. and Jinaga, B. (2010), "Reconstruction of brain electrical impedance tomography images using particle swarm optimization", 2010 5th International Conference on Industrial and Information Systems, 339-342.
  71. Lestari, W., Pinto, B., La Saponara, V., Yasui, J. and Loh, K.J. (2016), "Sensing uniaxial tensile damage in fiber-reinforced polymer composites using electrical resistance tomography", Smart Mater. Struct., 25(8), 085016. https://doi.org/10.1088/0964-1726/25/8/085016
  72. Li, C. and Chou, T.W. (2008), "Modeling of damage sensing in fiber composites using carbon nanotube networks", Compos. Sci. Technol., 68(15), 3373-3379. https://doi.org/10.1016/j.compscitech.2008.09.025.
  73. Li, D., Muller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G. (2008), "Processable aqueous dispersions of graphene nanosheets", Nat. Nanotechnol., 3(2), 101-105. https://doi.org/10.1038/nnano.2007.451.
  74. Li, J., Ma, P.C., Chow, W.S., To, C.K., Tang, B.Z. and Kim, J.K. (2007), "Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes", Adv. Funct. Mater., 17(16), 3207-3215. https://doi.org/10.1002/adfm.200700065.
  75. Li, J., Sham, M.L., Kim, J.K. and Marom, G. (2007), "Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites", Compos. Sci. Technol., 67(2), 296-305. https://doi.org/10.1016/j.compscitech.2006.08.009.
  76. Li, T., Almond, D.P. and Rees, D.A.S. (2011), "Crack imaging by scanning laser-line thermography and laser-spot thermography", Measure. Sci. Technol., 22(3), 035701. https://doi.org/10.1088/0957-0233/22/3/035701
  77. Li, T., Almond, D.P. and Rees, D.A.S. (2011), "Crack imaging by scanning pulsed laser spot thermography", NDT E Int., 44(2), 216-225. https://doi.org/10.1016/j.ndteint.2010.08.006.
  78. Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Ge, M. and Yan, W. (2003), "Image reconstruction of EIT using differential evolution algorithm", Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), 2, 1011-1014.
  79. Libonati, F. and Vergani, L. (2013), "Damage assessment of composite materials by means of thermographic analyses", Compos. Part B: Eng., 50, 82-90. https://doi.org/10.1016/j.compositesb.2013.01.012.
  80. Lim, S.P. and Haron, H. (2013), "Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions", 2013 IEEE Conference on Open Systems (ICOS), 41-46, December.
  81. Liu, S., Chevali, V.S., Xu, Z., Hui, D. and Wang, H. (2018), "A review of extending performance of epoxy resins using carbon nanomaterials", Compos. Part B: Eng., 136, 197-214. https://doi.org/10.1016/j.compositesb.2017.08.020.
  82. Loh, K.J., Hou, T.C., Lynch, J.P. and Kotov, N.A. (2009), "Carbon nanotube sensing skins for spatial strain and impact damage identification", J. Nondestruct. Eval., 28(1), 9-25. https://doi.org/10.1007/s10921-009-0043-y.
  83. Loh, K.P., Bao, Q., Ang, P.K. and Yang, J. (2010), "The chemistry of graphene", J. Mater. Chem., 20(12), 2277-2289. https://doi.org/10.1039/B920539J.
  84. Lu, J.P. (1997), "Elastic properties of carbon nanotubes and nanoropes", Phys. Rev. Lett., 79(7), 1297. https://doi.org/10.1103/PhysRevLett.79.1297.
  85. Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Compos. Part A: Appl. Sci. Manuf., 41(10), 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003.
  86. Ma, P.C., Kim, J.K. and Tang, B.Z. (2007), "Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites", Compos. Sci. Technol., 67(14), 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006.
  87. Ma, P.C., Tang, B.Z. and Kim, J.K. (2008), "Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites", Carbon, 46(11), 1497-1505. https://doi.org/10.1016/j.carbon.2008.06.048.
  88. Maierhofer, C., Myrach, P., Reischel, M., Steinfurth, H., Rollig, M. and Kunert, M. (2014), "Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations", Compos. Part B: Eng., 57, 35-46. https://doi.org/10.1016/j.compositesb.2013.09.036.
  89. Martin, C., Sandler, J., Windle, A., Schwarz, M.K., Bauhofer, W., Schulte, K. and Shaffer, M. (2005), "Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites", Polym., 46(3), 877-886. https://doi.org/10.1016/j.polymer.2004.11.081.
  90. Martiny, M., Schiele, R., Gritsch, M., Schulz, A. and Wittig, S. (1996), "In situ calibration for quantitative infrared thermography", QIRT, 96, 3-8. https://doi.org/10.21611/qirt.1996.001.
  91. McCrary-Dennis, M.C. and Okoli, O.I. (2012), "A review of multiscale composite manufacturing and challenges", J. Reinf. Plast. Compos., 31(24), 1687-1711. https://doi.org/10.1177/0731684412456612.
  92. Meola, C. (2012), Infrared Thermography Recent Advances and Future Trends, Bentham Science Publishers.
  93. Meola, C. and Carlomagno, G.M. (2004), "Recent advances in the use of infrared thermography", Measure. Sci. Technol., 15(9), R27-R58. https://doi.org/10.1088/0957-0233/15/9/r01.
  94. Meola, C., Carlomagno, G.M., Squillace, A. and Vitiello, A. (2006), "Non-destructive evaluation of aerospace materials with lock-in thermography", Eng. Fail. Anal., 13(3), 380-388. https://doi.org/10.1016/j.engfailanal.2005.02.007.
  95. Mickelson, E., Huffman, C., Rinzler, A., Smalley, R., Hauge, R. and Margrave, J. (1998), "Fluorination of single-wall carbon nanotubes", Chem. Phys. Lett., 296(1-2), 188-194. https://doi.org/10.1016/S0009-2614(98)01026-4.
  96. Milovanovic, B. and Banjad Pecur, I. (2016), "Review of active IR thermography for detection and characterization of defects in reinforced concrete", J. Imag., 2(2), 11. https://doi.org/10.3390/jimaging2020011.
  97. Mitchell, C.A., Bahr, J.L., Arepalli, S., Tour, J.M. and Krishnamoorti, R. (2002), "Dispersion of functionalized carbon nanotubes in polystyrene", Macromol., 35(23), 8825-8830. https://doi.org/10.1021/ma020890y.
  98. Mitsheal, A., Daerefa-a, Diogo, M., Opukuro, D.W. and George, H. (2017), "A review of structural health monitoring techniques as applied to composite structures", Struct. Durab. Hlth. Monit., 11(2), 91-147. https://doi.org/10.3970/sdhm.2017.011.091.
  99. Monti, M., Natali, M., Petrucci, R., Kenny, J.M. and Torre, L. (2011), "Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin", Polym. Compos., 32(5), 766-775. https://doi.org/10.1002/pc.21098.
  100. Montserrat, S. and Malek, J. (1993), "A kinetic analysis of the curing reaction of an epoxy resin", Thermochimica Acta, 228, 47-60. https://doi.org/10.1016/0040-6031(93)80273-D.
  101. Munoz, V., Vales, B., Perrin, M., Pastor, M.L., Welemane, H., Cantarel, A. and Karama, M. (2016), "Damage detection in CFRP by coupling acoustic emission and infrared thermography", Compos. Part B: Eng., 85, 68-75. https://doi.org/10.1016/j.compositesb.2015.09.011.
  102. Naghashpour, A. and Van Hoa, S. (2013), "A technique for real-time detection, location and quantification of damage in large polymer composite structures made of electrically nonconductive fibers and carbon nanotube networks", Nanotechnol., 24(45), 455502. https://doi.org/10.1088/0957-4484/24/45/455502
  103. Olmi, R., Bini, M. and Priori, S. (2000), "A genetic algorithm approach to image reconstruction in electrical impedance tomography", IEEE Tran. Evol. Comput., 4(1), 83-88. https://doi.org/10.1109/4235.843497.
  104. Oswald-Tranta, B. and Wally, G. (2006), "Thermo-inductive surface crack detection in metallic materials", Proc. 9th Eur. Conf. NDT, 1-8.
  105. Park, H., Lee, H., Park, K., Mo, S. and Kim, J. (2019), "Deep neural network approach in electrical impedance tomography-based real-time soft tactile sensor", 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7447-7452.
  106. Park, K., Scaccabarozzi, D., Sbarufatti, C., Jimenez-Suarez, A., Urena, A., Ryu, S. and Libonati, F. (2020), "Coupled health monitoring system for CNT-doped self-sensing composites", Carbon, 166, 193-204. https://doi.org/10.1016/j.carbon.2020.04.060.
  107. Pieczonka, L., Szwedo, M. and Uhl, T. (2011), "Vibrothermography-measurement system development and testing", Diagnostyka, 61-66. https://doi.org/10.29354/diag/116692
  108. Pitarresi, G. and Patterson, E. (2003), "A review of the general theory of thermoelastic stress analysis", J. Strain Anal. Eng. Des., 38(5), 405-417. https://doi.org/10.1243/03093240360713469.
  109. Planck, M. (2013), The Theory of Heat Radiation, Courier Corporation.
  110. Poelman, G., Hedayatrasa, S., Segers, J., Van Paepegem, W. and Kersemans, M. (2020), "Adaptive spectral band integration in flash thermography: Enhanced defect detectability and quantification in composites", Compos. Part B: Eng., 202, 108305. https://doi.org/10.1016/j.compositesb.2020.108305.
  111. Polo-Luque, M., Simonet, B. and Valcarcel, M. (2013), "Functionalization and dispersion of carbon nanotubes in ionic liquids", TrAC Trend. Anal. Chem., 47, 99-110. https://doi.org/10.1016/j.trac.2013.03.007.
  112. Prakash, R. (2012), Infrared Thermography, BoD-Books on Demand.
  113. Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500.
  114. Qu, S., Dai, Y., Zhang, D., Li, Q., Chou, T.-W. and Lyu, W. (2020), "Carbon nanotube film based multifunctional composite materials: an overview", Funct. Compos. Struct., 2(2), 022002. https://doi.org/10.1088/2631-6331/ab9752.
  115. Radamson, H.H. (2017), Graphene, Springer Handbook of Electronic and Photonic Materials, Springer, Cham.
  116. Rana, S., Alagirusamy, R. and Joshi, M. (2009), "A review on carbon epoxy nanocomposites", J. Reinf. Plast. Compos., 28(4), 461-487. https://doi.org/10.1177/0731684407085417.
  117. Rantala, J., Wu, D., Salerno, A. and Busse, G. (1996), "Lock-in thermography with mechanical loss angle heating at ultrasonic frequencies", Proc. Int Conf. Quantitative InfraRed Thermography (QIRT96), 2-5.
  118. Rashetnia, R., Alla, O.K., Gonzalez-Berrios, G., Seppanen, A. and Pour-Ghaz, M. (2018), "Electrical resistance tomography-based sensing skin with internal electrodes for crack detection in large structures", Mater. Eval., 76(10), 1405-1413.
  119. Riegert, G., Zweschper, T. and Busse, G. (2004), "Lockin thermography with eddy current excitation", Quant. InfraRed Thermog. J., 1(1), 21-32. https://doi.org/10.3166/qirt.1.21-32
  120. Roche, J.M., Balageas, D., Lamboul, B., Bai, G., Passilly, F., Mavel, A. and Grail, G. (2013), "Passive and active thermography for in situ damage monitoring in woven composites during mechanical testing", AIP Conf. Proc., 1511(1), 555-562. https://doi.org/10.1063/1.4789096.
  121. Roemer, J., Uhl, T. and Pieczonka, L. (2015), "Laser spot thermography for crack detection in aluminum structures", 7th International Symposium on NDT in Aerospace, 1-7.
  122. Russo, S., Nefti-Meziani, S., Carbonaro, N. and Tognetti, A. (2017), "A quantitative evaluation of drive pattern selection for optimizing EIT-based stretchable sensors", Sensor., 17(9), 1999. https://doi.org/10.3390/s17091999.
  123. Saleh, N.B., Pfefferle, L.D. and Elimelech, M. (2010), "Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes", Environ. Sci. Technol., 44(7), 2412-2418. https://doi.org/10.1021/es903059t.
  124. Sandler, J., Kirk, J., Kinloch, I., Shaffer, M. and Windle, A. (2003), "Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites", Polym., 44(19), 5893-5899. https://doi.org/10.1016/S0032-3861(03)00539-1.
  125. Sandler, J., Shaffer, M., Prasse, T., Bauhofer, W., Schulte, K. and Windle, A. (1999), "Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties", Polym., 40(21), 5967-5971. https://doi.org/10.1016/S0032-3861(99)00166-4.
  126. Schlichting, J., Maierhofer, C. and Kreutzbruck, M. (2012), "Crack sizing by laser excited thermography", NDT E Int., 45(1), 133-140. https://doi.org/10.1016/j.ndteint.2011.09.014.
  127. Sham, M.L., Li, J., Ma, P.C. and Kim, J.K. (2009), "Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: A review", J. Compos. Mater., 43(14), 1537-1564. https://doi.org/10.1177/0021998308337740.
  128. Shepard, S.M. (2007), "Flash thermography of aerospace composites", IV Conferencia Panamericana de END Buenos Aires, 7, 26.
  129. Shepard, S.M., Ahmed, T. and Lhota, J.R. (2004), "Experimental considerations in vibrothermography", Thermosense XXVI, 5405, 332-335.
  130. Sih, G. and Chen, E. (1973), "Fracture analysis of unidirectional composites", J. Compos. Mater., 7(2), 230-244. https://doi.org/10.1177/002199837300700207.
  131. Somersalo, E., Cheney, M. and Isaacson, D. (1992), "Existence and uniqueness for electrode models for electric current computed tomography", SIAM J. Appl. Math., 52(4), 1023-1040. https://doi.org/10.1137/0152060.
  132. Speakman, J.R. and Ward, S. (1998), "Infrared thermography: principles and applications", Zoology-Jena-, 101, 224-232.
  133. Spillman Jr, W. (1989), "Fiber optic sensors for composite monitoring", Fiber Opt. Smart Struct. Skin., 986, 6-11. https://doi.org/10.1117/12.948882.
  134. Spinks, G.M., Wallace, G.G., Liu, L. and Zhou, D. (2003), "Conducting polymers electromechanical actuators and strain sensors", Macromolecular Symposia, 192(1), 161-170. https://doi.org/10.1002/masy.200390025.
  135. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nat., 442(7100), 282-286. https://doi.org/10.1038/nature04969
  136. Stanley, P. and Chan, W. (1988), "The application of thermoelastic stress analysis techniques to composite materials", J. Strain Anal. Eng. Des., 23(3), 137-143. https://doi.org/10.1243/03093247V233137.
  137. Steinberger, R., Valadas Leitao, T.I., Ladstatter, E., Pinter, G., Billinger, W. and Lang, R.W. (2006), "Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing", Int. J. Fatig., 28(10), 1340-1347. https://doi.org/10.1016/j.ijfatigue.2006.02.036.
  138. Sylvester, J. and Uhlmann, G. (1986), "A uniqueness theorem for an inverse boundary value problem in electrical prospection", Commun. Pure Appl. Math., 39(1), 91-112. https://doi.org/10.1002/cpa.3160390106.
  139. Tallman, T.N., Gungor, S., Wang, K. and Bakis, C.E. (2015), "Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler", Struct. Hlth. Monit., 14(1), 100-109. https://doi.org/10.1177/1475921714554142.
  140. Tallman, T.N., Gungor, S., Wang, K.W. and Bakis, C.E. (2014), "Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography", Smart Mater. Struct., 23(4), 045034. https://doi.org/10.1088/0964-1726/23/4/045034.
  141. Talreja, R. (2003), Fatigue of Composite Materials, Elsevier.
  142. Talreja, R. and Singh, C.V. (2012), Damage and Failure of Composite Materials, Cambridge University Press.
  143. Thomas, A., Kim, J., Tallman, T. and Bakis, C. (2019), "Damage detection in self-sensing composite tubes via electrical impedance tomography", Compos. Part B: Eng., 177, 107276. https://doi.org/10.1016/j.compositesb.2019.107276.
  144. Thostenson, E.T. and Chou, T.W. (2008), "Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks", Nanotechnol., 19(21), 215713. https://doi.org/10.1088/0957-4484/19/21/215713
  145. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compo. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
  146. Tian, G.Y., Gao, Y., Li, K., Wang, Y., Gao, B. and He, Y. (2016), "Eddy current pulsed thermography with different excitation configurations for metallic material and defect characterization", Sensor., 16(6), 843. https://doi.org/10.3390/s16060843.
  147. Tian, G.Y., Wilson, J., Cheng, L., Almond, D.P., Kostson, E. and Weekes, B. (2011), "Pulsed eddy current thermography and applications", New Developments in Sensing Technology for Structural Health Monitoring, Springer, Berlin, Heidelberg.
  148. Toscano, C., Meola, C., Iorio, M. and Carlomagno, G. (2012), "Porosity and inclusion detection in CFRP by infrared thermography", Adv. Opt. Technol., 2012, Article ID 765953, 6. https://doi.org/10.1155/2012/765953.
  149. Touhara, H., Yonemoto, A., Yamamoto, K., Komiyama, S., Kawasaki, S., Okino, F., Yanagisawa, T. and Endo, M. (2004), "Fluorination of cup-stacked carbon nanotubes, structures and properties", MRS Online Proc. Lib., 858(1), 40-45.
  150. Tran, Q.H., Han, D., Kang, C., Haldar, A. and Huh, J. (2017), "Effects of ambient temperature and relative humidity on subsurface defect detection in concrete structures by active thermal imaging", Sensor., 17(8), 1718. https://doi.org/10.3390/s17081718.
  151. Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.
  152. Tumanski, S. (2006), Principles of Electrical Measurement, CRC Press.
  153. Umar, M.Z., Vavilov, V., Abdullah, H. and Ariffin, A.K. (2016), "Ultrasonic infrared thermography in non-destructive testing: A review", Russ. J. Nondestr. Test., 52(4), 212-219. https://doi.org/10.1134/S1061830916040082.
  154. Vadlamani, V.K., Chalivendra, V.B., Shukla, A. and Yang, S. (2012), "Sensing of damage in carbon nanotubes and carbon black-embedded epoxy under tensile loading", Polym. Compos., 33(10), 1809-1815. https://doi.org/10.1002/pc.22326.
  155. Vauhkonen, M., Vadasz, D., Karjalainen, P.A., Somersalo, E. and Kaipio, J.P. (1998), "Tikhonov regularization and prior information in electrical impedance tomography", IEEE Tran. Med. Imag., 17(2), 285-293. https://doi.org/10.1109/42.700740.
  156. Vauhkonen, P.J., Vauhkonen, M., Savolainen, T. and Kaipio, J.P. (1999), "Three-dimensional electrical impedance tomography based on the complete electrode model", IEEE Tran. Biomed. Eng., 46(9), 1150-1160. https://doi.org/10.1109/10.784147.
  157. Vavilov, V., Swiderski, W. and Derusova, D. (2015), "Ultrasonic and optical stimulation in IR thermographic NDT of impact damage in carbon composites", Quant. InfraRed Thermog. J., 12(2), 162-172. https://doi.org/10.1080/17686733.2015.1046678
  158. Vavilov, V.P. and Burleigh, D.D. (2015), "Review of pulsed thermal NDT: Physical principles, theory and data processing", NDT E Int., 73, 28-52. https://doi.org/10.1016/j.ndteint.2015.03.003.
  159. Vergani, L., Colombo, C. and Libonati, F. (2014), "A review of thermographic techniques for damage investigation in composites", Fract. Struct. Integr. Ann., 8, 1-12. https://doi.org/10.3221/IGF.ESIS.27.01.
  160. Walle, G. and Netzelmann, U. (2006), "Thermographic crack detection in ferritic steel components using inductive heating", Proc. 9th ECNDT Berlin, 25, 1-10.
  161. Wang, Y., Wang, Y., Han, B., Wan, B., Cai, G. and Chang, R. (2018), "In situ strain and damage monitoring of GFRP laminates incorporating carbon nanofibers under tension", Polym., 10(7), 777. https://doi.org/10.3390/polym10070777.
  162. Wang, Y., Wang, Y., Wan, B., Han, B., Cai, G. and Chang, R. (2018), "Strain and damage self-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension", Compos. Part A: Appl. Sci. Manuf., 113, 40-52. https://doi.org/10.1016/j.compositesa.2018.07.017.
  163. Wang, Y. and Weng, G.J. (2018), "Electrical conductivity of carbon nanotube-and graphene-based nanocomposites", Micromechanics and Nanomechanics of Composite Solids, Springer, Cham.
  164. Weiss, N.O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y. and Duan, X. (2012), "Graphene: an emerging electronic material", Adv. Mater., 24(43), 5782-5825. https://doi.org/10.1002/adma.201201482.
  165. Wiecek, B. (2006), "Review on thermal image processing for passive and active thermography", 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 686-689.
  166. Wilson, J., Tian, G., Abidin, I., Yang, S. and Almond, D. (2010), "Pulsed eddy current thermography: system development and evaluation", Insight-Non-Destruct. Test. Condit. Monit., 52(2), 87-90. https://doi.org/10.1784/insi.2010.52.2.87
  167. Wu, D. and Busse, G. (1998), "Lock-in thermography for nondestructive evaluation of materials", Revue Generale de Thermique, 37(8), 693-703. https://doi.org/10.1016/S0035-3159(98)80047-0.
  168. Wu, J., Zhu, J., Xia, H., Liu, C., Huang, X. and Tian, G.Y. (2019), "DC-biased magnetization based eddy current thermography for subsurface defect detection", IEEE Tran. Indus. Inform., 15(12), 6252-6259. https://doi.org/10.1109/TII.2019.2891107.
  169. Xia, Z. and Curtin, W. (2007), "Modeling of mechanical damage detection in CFRPs via electrical resistance", Compos. Sci. Technol., 67(7-8), 1518-1529. https://doi.org/10.1016/j.compscitech.2006.07.017.
  170. Yang, B., Huang, Y. and Cheng, L. (2013), "Defect detection and evaluation of ultrasonic infrared thermography for aerospace CFRP composites", Infrar. Phys. Technol., 60, 166-173. https://doi.org/10.1016/j.infrared.2013.04.010.
  171. Yang, R. and He, Y. (2016), "Optically and non-optically excited thermography for composites: A review", Infrar. Phys. Technol., 75, 26-50. https://doi.org/10.1016/j.infrared.2015.12.026.
  172. Yazdani, H., Hatami, K., Khosravi, E., Harper, K. and Grady, B.P. (2014), "Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading", Carbon, 79, 393-405. https://doi.org/10.1016/j.carbon.2014.07.082.
  173. Yazdani, H., Smith, B.E. and Hatami, K. (2016), "Multi-walled carbon nanotube-filled polyvinyl chloride composites: Influence of processing method on dispersion quality, electrical conductivity and mechanical properties", Compos. Part A: Appl. Sci. Manuf., 82, 65-77. https://doi.org/10.1016/j.compositesa.2015.12.005.
  174. Yee, M.J., Mubarak, N., Abdullah, E., Khalid, M., Walvekar, R., Karri, R.R., Nizamuddin, S. and Numan, A. (2019), "Carbon nanomaterials based films for strain sensing application-A review", Nano Struct. Nano Object., 18, 100312. https://doi.org/10.1016/j.nanoso.2019.100312.
  175. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Sci., 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637.
  176. Zalameda, J. and Winfree, W. (2018), "Detection and characterization of damage in quasi-static loaded composite structures using passive thermography", Sensor., 18(10), 3562. https://doi.org/10.3390/s18103562.
  177. Zenzinger, G., Bamberg, J., Satzger, W. and Carl, V. (2007), "Thermographic crack detection by eddy current excitation", Nondestr. Test. Eval., 22(2-3), 101-111. https://doi.org/10.1080/10589750701447920.
  178. Zha, J.W., Zhang, B., Li, R.K.Y. and Dang, Z.M. (2016), "High-performance strain sensors based on functionalized graphene nanoplates for damage monitoring", Compos. Sci. Technol., 123, 32-38. https://doi.org/10.1016/j.compscitech.2015.11.028.
  179. Zhang, D., Ye, L., Wang, D., Tang, Y., Mustapha, S. and Chen, Y. (2012), "Assessment of transverse impact damage in GF/EP laminates of conductive nanoparticles using electrical resistivity tomography", Compos. Part A: Appl. Sci. Manuf., 43(9), 1587-1598. https://doi.org/10.1016/j.compositesa.2012.04.012.
  180. Zhang, Q.H. and Chen, D.J. (2004), "Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA", J. Mater. Sci., 39(5), 1751-1757. https://doi.org/10.1023/B:JMSC.0000016180.42896.0f.
  181. Zhang, W., Dehghani-Sanij, A.A. and Blackburn, R.S. (2007), "Carbon based conductive polymer composites", J. Mater. Sci., 42(10), 3408-3418. https://doi.org/10.1007/s10853-007-1688-5.
  182. Zhou, L., Forman, H.J., Ge, Y. and Lunec, J. (2017), "Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion", Toxicol. Vitro, 42, 292-298. https://doi.org/10.1016/j.tiv.2017.04.027.