The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.
Journal of Korean Institute of Industrial Engineers
/
v.2
no.1
/
pp.37-44
/
1976
It is necessary for developing countries to increase their consolidation of domestic technology in order to improve their economy. In order to raise their techniques, they have to try to induce the advanced know-how from other countries in spite of heavy cost. The object of this study is to establish the model on which we base our choice of the proper techniques or plants and give priority to them by using quantified selection criteria. The method in this study has two stages, and the writer has selected 12 factors affecting the decision making for the importation of technology from the industrially advanced countries. First, the lists of valuable know-how for the better development of national industry should be determined, and for the formulation and arrangement of the lists, a council of specialists which uses questionnaires in terms of the Semantic Differential Method, should be organized. Second, for the assignments of priority to the prospective items for importation, the writer has imployed both the Leontief Model and the Disman Model as objective methods and Mottley-Newton method, one of the R&D Project Selection Methods, as a general model. The writer has applied the methods described above to the fields of petrochemical industry in Korea.
The worldwide energy market is enlarging rapidly according to current issues like globalization, deregulation, global warming and strengthening for environmental regulation as well as the energy technology is developing speedily by the add of information and communication techniques. In spite of these advanced techniques in the field of the renewable energy, solar power depends on the governmental aid largely in comparison with other renewable energy sources because of the high initial investment cost. Therefore it is important to investigate scrupulously for the expected erection site of solar power plant from the planning stage. This paper shows actual measurement data of solar radiation of scheduled solar power locations in the waterworks site with consideration of waterworks facilities and regional specialties and presents the data which was analyzed comparably with the radiation data of adjacent locations served by national authorities. In addition, these data were analyzed using RETScreen and used for making decision on the business validity.
Purpose - The research aimed to reveal real decisional behavioral of management institutes in India for social media marketing usage, and analyses of empirical elements of social media consumption pattern. Research design, data, and methodology - The investigation was based around a research methodology using quantitative analysis with appropriate statistical techniques on random surveys of consumers, detailed exploratory and confirmatory factor analyses are applied to assess the empirical validity of the model and multiple regression employed using R studio edition to validate the reliability of the developed models. Results - A new conceptual framework is proposed - the management institutions decision model, providing a tool for effective and more focused decision-making strategies for developing better utilization techniques for social media. Management institutions have different requirements based upon objectives and resources available. The evidence suggests that the administrators need to be more aware of consumer indicators when targeting and designing social media marketing strategy. Conclusions - The research was based on samples and not the entire population of target consumers, providing limitations. As an inferential statistical method was chosen, the results might be susceptible to inaccuracy. The model developed from different age users, thereby providing rich perspectives into social media usage pattern.
The contrast enhancement techniques based on Laplacian pyramid image fusion have a benefit that they can faithfully describe the image information because they combine the multiple resource images by selecting the desired pixel in each image. However, they also have some problem that the output image may contain noise, because the methods evaluate the visual information on the basis of each pixel. In this paper, an improved contrast enhancement method, which effectively suppresses the noise, using image fusion is proposed. The proposed method combines the resource images by making Laplacian pyramids generated from weight maps, which are produced by measuring the difference between the block-based local well exposedness and local homogeneity for each resource image. We showed the proposed method could produce less noisy images compared to the conventional techniques in the test for various images.
The purposes of this study were to : (a) analyze the menus of food service operations using the menu analysis techniques of Kasavana & Smith, Miller, Merricks & Jones, Pavesic and Uman, (b) closely examine the characteristics of the five analysis techniques. Calculations for the menu analysis were done by computer using the MS 2000 Excel spreadsheet program. Menu mix% and unit contribution margin were used as variables by Kasavana & Smith, sales volume and food cost% by Miller, sales volume and cash contribution by Merrick & Jones, weighted contribution margin and food cost% by Pavesic, and total cash contribution and unit contribution margin by Uman. In each case, a four-cell matrix was created, and menu items were located in each according they achieved high or low scores with respect to two variables. Items that scored favorably on both variables were rated in the top category (e.g., star, prime, signature, group A, winner) and those that scored below average on both were rated in the lowest category (e.g., dog, problem, loser, group D, loser). While the 3 methods of Kasavana & Smith, Miller, Merrick & Jones focus on customers' viewpoints, the others consider the managers' viewpoints. Therefore, it is more likely to be desirable for decision-making on menus if the menu analysis technique chosen is suited to its purpose.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2000.10a
/
pp.328-332
/
2000
As DNA sequences have been known through the Genome project the techniques for dealing with molecule-level gene information are being made researches briskly. It is also urgent to develop new computer algorithms for making databases and analyzing it efficiently considering the vastness of the information for known sequences. In this respect, this paper studies the association rule search algorithms for finding out the characteristics shown by means of the association between promoter sequences and genes, which is one of the important research areas in molecular biology. This paper treat biological data, while previous search algorithms used transaction data. So, we design a transformed association nile algorithm that covers data types and biological properties. These research results will contribute to reducing the time and the cost for biological experiments by minimizing their candidates.
Adya P. Singh;Park, Byung-Dae;Wi, Seung-Gon;Lee, Kwang-Ho;Yoon, Tae-Ho;Kim, Yoon-Soo
Plant Resources
/
v.5
no.2
/
pp.95-103
/
2002
Microscopic techniques were used to observe the microstructure of rice husk. Microscopic examination showed that two main components of husk, lemma and palea consisted of outer epidermis, layers of fibers, vascular bundles, parenchyma cells, and inner epidermis, in sequence from the outer to the inner surface. The outer epidermal walls were extremely thick, highly convoluted and lignified. The underlying fibers were also thick-walled and lignified. Parenchyma cells were thin-walled and unlignified. Inner epidermal cells were also unlignified. The outer surface of both lemma and palea were conspicuously ridged, but the lower surface had a flat appearance. As part of a detailed study to characterize rice husk using microscopic and micro-analytical techniques, distribution of silica was also examined, and is presented elsewhere. Rice husk can potentially be used as a raw material for making composite products and the observations presented here form valuable background information for our future work related to product development.
Journal of the Korean Data and Information Science Society
/
v.26
no.1
/
pp.229-241
/
2015
Nowadays, an open-market which provides sellers and consumers a cyber place for making a transaction over the Internet has emerged as a prevalent sales channel because of convenience and relatively low price it provides. However, there are few studies about CRM strategies based on VIP consumers for an open-market even though understanding VIP consumers' behaviors in open-markets is important to increase its revenue. Therefore, we propose CRM strategies targeted on VIP customers, obtained by analyzing the transaction data of VIP customers from an open-market using data mining techniques. To that end, we first defined the VIP customers in terms of recency, frequency and monetary (RFM) values. Then, we used data mining techniques to develop a model which best classifies and identifies infiluential factors customers into VIPs or non-VIPs. We also validate each of promotion types in the aspect of effectiveness and identify association rules among the types. Then, based on the findings from these experiments, we propose strategies from the perspectives of CRM dimensions for the open-market to thrive.
The Journal of Korean Association of Computer Education
/
v.18
no.4
/
pp.63-70
/
2015
Program source code is a set of complex syntactic information which are expressed in text forms, and contains complex logical structures. Structural and logical complexity inside source code become barriers in applying visualization techniques shown in traditional big-data approaches when the volume of source code become over ten-thousand lines of code. This paper suggests a procedure for making visualization of structural characteristics in source code. For this purpose, this paper defines internal data structures as well as inter-procedural relationships among functions. The paper also suggests a means of outlining the structural characteristics of source code by visualizing the source codes with network forms The result of the research work can be used as a means of controling and understanding the massive volume of source code.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.