• Title/Summary/Keyword: making techniques

Search Result 1,309, Processing Time 0.026 seconds

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

Application of Big Data and Machine-learning (ML) Technology to Mitigate Contractor's Design Risks for Engineering, Procurement, and Construction (EPC) Projects

  • Choi, Seong-Jun;Choi, So-Won;Park, Min-Ji;Lee, Eul-Bum
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.823-830
    • /
    • 2022
  • The risk of project execution increases due to the enlargement and complexity of Engineering, Procurement, and Construction (EPC) plant projects. In the fourth industrial revolution era, there is an increasing need to utilize a large amount of data generated during project execution. The design is a key element for the success of the EPC plant project. Although the design cost is about 5% of the total EPC project cost, it is a critical process that affects the entire subsequent process, such as construction, installation, and operation & maintenance (O&M). This study aims to develop a system using machine-learning (ML) techniques to predict risks and support decision-making based on big data generated in an EPC project's design and construction stages. As a result, three main modules were developed: (M1) the design cost estimation module, (M2) the design error check module, and (M3) the change order forecasting module. M1 estimated design cost based on project data such as contract amount, construction period, total design cost, and man-hour (M/H). M2 and M3 are applications for predicting the severity of schedule delay and cost over-run due to design errors and change orders through unstructured text data extracted from engineering documents. A validation test was performed through a case study to verify the model applied to each module. It is expected to improve the risk response capability of EPC contractors in the design and construction stage through this study.

  • PDF

The Impact of Project Governance Factors on IT Project Objectives Performance (프로젝트 거버넌스의 구성요인들이 IT 프로젝트 목표 성과에 미치는 영향)

  • Jung-Soo Kim;Seung-Chul Kim;Hee Kyung Kim;Chang Won Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • Companies are paying attention to project governance to realize their goal strategies, project success, and project value in a rapid and complex environment due to the development of information technology. This study aims to explore project governance and factors from literature review and practice guides related to project governance and empirically analyze the impact of project governance factors on IT project objective performance. The survey was conducted on project managers, project team members, and project management members with experience in carrying out business IT projects within two years at companies in various industries in Korea. The main conclusion is as follows. Among the project governance factors, disclosure and reporting that uses and reports using appropriate and reliable information about projects related to decision-making activities positively impact the achievement of IT project objectives: business success and stakeholder satisfaction. Among the project governance factors, project sponsorship, a role that effectively connects management and projects, and a project management framework that provides tools, procedures, resources, and techniques for projects positively impact IT project objective performance. This study is of academic and practical significance in that it identifies the definition and factors of project governance through companies in various industries in Korea and the positive impact of project governance factors on IT project objective performance.

2-Step Structural Damage Analysis Based on Foundation Model for Structural Condition Assessment (시설물 상태평가를 위한 파운데이션 모델 기반 2-Step 시설물 손상 분석)

  • Hyunsoo Park;Hwiyoung Kim ;Dongki Chung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.621-635
    • /
    • 2023
  • The assessment of structural condition is a crucial process for evaluating its usability and determining the diagnostic cycle. The currently employed manpower-based methods suffer from issues related to safety, efficiency, and objectivity. To address these concerns, research based on deep learning using images is being conducted. However, acquiring structural damage data is challenging, making it difficult to construct a substantial amount of training data, thus limiting the effectiveness of deep learning-based condition assessment. In this study, we propose a foundation model-based 2-step structural damage analysis to overcome the lack of training data in image-based structural condition assessments. We subdivided the elements of structural condition assessment into instantiation and quantification. In the quantification step, we applied a foundation model for image segmentation. Our method demonstrated a 10%-point increase in mean intersection over union compared to conventional image segmentation techniques, with a notable 40%-point improvement in the case of rebar exposure. We anticipate that our proposed approach will enhance performance in domains where acquiring training data is challenging.

Verbal Violence Experienced by Nursing Students during Growth Period (간호대학생의 성장기 때 경험한 언어폭력 )

  • Mi-Hee Kim;Soon-Ok Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.769-782
    • /
    • 2022
  • The purpose is van Manen's interpretation of verbal violence experienced by nursing students during their growing up period in order to use it as basic data to improve the verbal communication essential for solving nursing problems and performing tasks with guardians and peers. For this, 10 students enrolled in the nursing department of A University in Gyeonggi-do were selected and data were collected through in-depth interviews. Data analysis conducted an existential inquiry process to focus on the essence of experience. Five thematic statements in this study were as follows: 'Beginning with a trivial conversation', 'Getting confused mind', 'Being an opportunity to reflect on myself', 'Changing the frame of my thought' and 'Making a mature me'. As a result, it confirmed the necessity of strengthening language usage and personal competency that respect the other party. Therefore, it is suggested that follow-up studies on empathy or self-positive effects are needed for effective communication techniques.

Trends in Patents for Numerical Analysis-Based Financial Instruments Valuation Systems (수치해석 기반 금융상품 가치평가 시스템 특허 동향)

  • Moonseong Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.41-47
    • /
    • 2023
  • Financial instruments valuation continues to evolve due to various technological changes. Recently, there has been increased interest in valuation using machine learning and artificial intelligence, enabling the financial market to swiftly adapt to changes. This technological advancement caters to the demand for real-time data processing and facilitates accurate and effective valuation, considering the diverse nature of the financial market. Numerical analysis techniques serve as crucial decision-making tools among financial institutions and investors, acknowledged as essential for performance prediction and risk management in investments. This paper analyzes Korean patent trends of numerical analysis-based financial systems, considering the diverse shifts in the financial market and asset data to provide accurate predictions. This study could shed light on the advancement of financial technology and serves as a gauge for technological standards within the financial market.

Neurosurgical Management of Cerebrospinal Tumors in the Era of Artificial Intelligence : A Scoping Review

  • Kuchalambal Agadi;Asimina Dominari;Sameer Saleem Tebha;Asma Mohammadi;Samina Zahid
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.632-641
    • /
    • 2023
  • Central nervous system tumors are identified as tumors of the brain and spinal cord. The associated morbidity and mortality of cerebrospinal tumors are disproportionately high compared to other malignancies. While minimally invasive techniques have initiated a revolution in neurosurgery, artificial intelligence (AI) is expediting it. Our study aims to analyze AI's role in the neurosurgical management of cerebrospinal tumors. We conducted a scoping review using the Arksey and O'Malley framework. Upon screening, data extraction and analysis were focused on exploring all potential implications of AI, classification of these implications in the management of cerebrospinal tumors. AI has enhanced the precision of diagnosis of these tumors, enables surgeons to excise the tumor margins completely, thereby reducing the risk of recurrence, and helps to make a more accurate prediction of the patient's prognosis than the conventional methods. AI also offers real-time training to neurosurgeons using virtual and 3D simulation, thereby increasing their confidence and skills during procedures. In addition, robotics is integrated into neurosurgery and identified to increase patient outcomes by making surgery less invasive. AI, including machine learning, is rigorously considered for its applications in the neurosurgical management of cerebrospinal tumors. This field requires further research focused on areas clinically essential in improving the outcome that is also economically feasible for clinical use. The authors suggest that data analysts and neurosurgeons collaborate to explore the full potential of AI.

Evaluation of Topic Modeling Performance for Overseas Construction Market Analysis Using LDA and BERTopic on News Articles (LDA 및 BERTopic 기반 해외건설시장 뉴스 기사 토픽모델링 성능평가)

  • Baik, Joonwoo;Chung, Sehwan;Chi, Seokho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.811-819
    • /
    • 2023
  • Understanding the local conditions is a crucial factor in enhancing the success potential of overseas construction projects. This can be achieved through the analysis of news articles of the target market using topic modeling techniques. In this study, the authors aimed to analyze news articles using two topic modeling methods, namely Latent Dirichlet Allocation (LDA) and BERTopic, in order to determine the optimal approach for market condition analysis. To evaluate the alignment between the generated topics and the actual themes of the news documents, the research collected 6,273 BBC news articles, created ground truth data for individual news article topics, and finally compared this ground truth with the results of the topic modeling. The F1 score for LDA was 0.011, while BERTopic achieved a score of 0.244. These results indicate that BERTopic more accurately reflected the actual topics of news articles, making it more effective for understanding the overseas construction market.

Evaluation of Edge-Based Data Collection System for Key-Value Store Utilizing Time-Series Data Optimization Techniques (시계열 데이터 최적화 기법을 활용한 Key-value store의 엣지 기반 데이터 수집 시스템 평가)

  • Woojin Cho;Hyung-ah Lee;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • In today's world, we find ourselves facing energy crises due to factors such as war and climate crises. To prepare for these energy crises, many researchers continue to study systems related to energy monitoring and conservation, such as energy management systems, energy monitoring, and energy conservation. In line with these efforts, nations are making it mandatory for energy-consuming facilities to implement these systems. However, these facilities, limited by space and energy constraints, are exploring ways to improve. This research explores the operation of a data collection system using low-performance embedded devices. In this context, it proves that an optimized version of RocksDB, a Key-Value store, outperforms traditional databases when it comes to time-series data. Furthermore, a comprehensive database evaluation tool was employed to assess various databases, including optimized RocksDB and regular RocksDB. In addition, heterogeneous databases and evaluations are conducted using a UD Benchmark tool to evaluate them. As a result, we were able to see that on devices with low performance, the time required was up to 11 times shorter than that of other databases.

Investigation and Analysis of Dark Patterns in Advertisements of News Websites (뉴스 사이트별 다크패턴(Dark Patterns) 광고 실태조사 및 분석)

  • Jun-Young Han;Sang-Jun Yeon;Jun-Hyoung Oh
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.515-525
    • /
    • 2024
  • Dark patterns refer to intentionally deceptive design techniques used by online service providers to hide necessary information, preventing users from taking desired actions or luring them into unintended behaviors. In this study, we analyzed the prevalence of dark patterns such as banners, advertorials, pop-ups, and video ads, and their impact on users across the top 200 news websites worldwide. The research revealed that there is a minimal correlation between banner ads and user bounce rates or unique visitors. Consequently, the main screen moving banner and headline news screen moving banner were most frequently observed in South America, while the headline news screen fixed banner was most commonly observed in Asia. All other categories were predominantly observed in Europe, making European websites the most diverse and abundant in various dark patterns.