• 제목/요약/키워드: majorization problems

검색결과 4건 처리시간 0.016초

SOME MAJORIZATION PROBLEMS ASSOCIATED WITH p-VALENTLY STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

  • Altintas, Osman;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제17권2호
    • /
    • pp.175-183
    • /
    • 2001
  • The main object of this paper is to investigate several majorization problems involving two subclasses $S_{p,q}(\gamma)$ and $C_{p,q}(\gamma)$ of p-valently starlike and p-valently convex functions of complex order ${\gamma}{\neq}0$ in the open unit disk $\mathbb{u}$. Relevant connections of the results presented here with those given by earlier workers on the subject are also indicated.

  • PDF

MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH q-DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

  • Vijaya, K.;Murugusundaramoorthy, G.;Cho, N.E.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.71-81
    • /
    • 2021
  • The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q-calculus operator associated with exponential function.

UNDERSTANDING NON-NEGATIVE MATRIX FACTORIZATION IN THE FRAMEWORK OF BREGMAN DIVERGENCE

  • KIM, KYUNGSUP
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권3호
    • /
    • pp.107-116
    • /
    • 2021
  • We introduce optimization algorithms using Bregman Divergence for solving non-negative matrix factorization (NMF) problems. Bregman divergence is known a generalization of some divergences such as Frobenius norm and KL divergence and etc. Some algorithms can be applicable to not only NMF with Frobenius norm but also NMF with more general Bregman divergence. Matrix Factorization is a popular non-convex optimization problem, for which alternating minimization schemes are mostly used. We develop the Bregman proximal gradient method applicable for all NMF formulated in any Bregman divergences. In the derivation of NMF algorithm for Bregman divergence, we need to use majorization/minimization(MM) for a proper auxiliary function. We present algorithmic aspects of NMF for Bregman divergence by using MM of auxiliary function.

Reducing the congestion in a class of job shops

  • 김성철
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1987년도 추계학술발표회 발표논문초록집; 중소기업협동조합중앙회, 서울; 31 Oct. 1987
    • /
    • pp.35-35
    • /
    • 1987
  • Consider a job shop that is modelled as an open queueing network of the Jackson(l957) type. All work stations in the shop have the same number of parallel servers. Two problems are studied : the loading of stations and the assignment of servers, which are represented by loading and assingment vectors, respectively. Ma jorization and arrangement orderings are established to order, respectively, the loading and the assignment vectors. It is shown that reducing the loading vector under ma jorizat ion or increasing the assignment vector under arrangement ordering will reduce the congestion in the shop in terms of reducing the total number of jobs(in the sense of likelihood ratio ordering), the maximum queue length(in the sense of stochastic ordering), and the queue-length vector( in the sense of stochastic majorization). The results can be used to supprot production planning in certain job shops, and to aid the desing of storage capacity. (OPEN QUEUEING NETWORK; WJORIZATION; ARRANGEMENT ORDERINC; LIKELIHOOD RATIO ORDERINC; STOCHASTIC ORDERING)

  • PDF