• Title/Summary/Keyword: magnetoelasticity

Search Result 5, Processing Time 0.016 seconds

A Study of Measuring Existing Steel Stress Using Magnetoelasticity (자기유도 현상을 이용한 철근의 잔존응력 측정기술 연구)

  • Rhim Hong-Chul;Cho Young-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.185-187
    • /
    • 2006
  • This study deals with characterization and the application of magnetoelasticity as a device which measures existing steel stress. Available method of measuring existing stress needs break the concrete and cut the steel bar. But Proposed method doesn't need to cut the steel bar. A successful application of magnetoelasticity depends on the linearity of the relationship between the elastic and magnetic response due to loading. To investigate the correlation between two, steel bars are loaded in tension under uniaxial loading while the magnetic reading is recorded. Results showed linearity or partial-linearity of the elastic behavior of steel bars in relation to magnetic change. In the paper, the various factors affecting the measurements are also discussed.

  • PDF

Stress Measurement of Steel Bar Using Magnetoelasticity (자기유도현상을 이용한 철근 응력측정)

  • Rhim Hong-Chul;Cho Young-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.77-81
    • /
    • 2006
  • An attempt has been made to measure existing steel stress using magnetoelasticity. A device has been developed and used for the measurement of magnetism in response to the deformation of a steel bar. The proposed technique can be used for the assessment of existing reinforced concrete structures by the measurements of steel stress embedded inside concrete. A traditional technique requires to break the existing steel bar to measure existing strain. However, the proposed technique is developed to measure the stress without damaging the steel bar. A successful application of magnetoelasticity depends on the establishment of relationship between elastic and magnetic response due to loading. To investigate the correlation between the two, steel bars are loaded in tension under uniaxial loading while the magnetic reading is recorded. Based on the test results, equations are suggested to predict stress for steel bars with different diameters.

  • PDF

Application of magnetoelastic stress sensors in large steel cables

  • Wang, Guodun;Wang, Ming L.;Zhao, Yang;Chen, Yong;Sun, Bingnan
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.155-169
    • /
    • 2006
  • In this paper, the application of magnetoelasticity in static tension monitoring for large steel cables is discussed. Magnetoelastic (EM) stress sensors make contact-free tension monitoring possible for hanger cables and post-tensioned cables on suspension and cable-stayed bridges. By quantifying the correlation of magnetic relative permeability with tension and temperature, the EM sensors inspect the load levels in the steel cables. Cable tension monitoring on Qiangjiang (QJ) 4th Bridge demonstrates the reliability of the EM sensors.

Characterization of Co-Ni Based Ferromagnetic Shape Memory Alloy (자성 Co-Ni 계 형상기억합금의 특성)

  • Han, Ji-Won;Park, Sung Bum
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.8-13
    • /
    • 2015
  • The magnetic shape memory alloys have recently received a lot of attention due to the considerable progress achieved in understanding the particular importance and the development of the factors. Among these alloys, the ferromagnetic Co-Ni- alloys have been concerned specially because of the thermoelastic character of the fcc (g) - bct (a) martensitic transformation which exhibits under the action of the temperature (shape memory effect), the stress (superelasticity) and the magnetic field (magnetoelasticity). The morphological, the crystallographical, and the thermal characteristics of thermally induced martensite in Co-35.3Ni-11.3Al(wt.%) and Co-28.1Ni-47.4Fe-3.3Ti (wt.%) alloy have been investigated by the scanning electron microscope (SEM), the X-ray Diffraction (XRD), and the differential scanning calorimeter (DSC).

Contribution of Maxwell Stress in Air on the Deformations of Induction Machines

  • Fonteyn, K.A.;Belahcen, A.;Rasilo, P.;Kouhia, R.;Arkkio, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.336-341
    • /
    • 2012
  • Deformations in a cage-induction machine are investigated with simulations. The contribution of the Maxwell stress in the air gap and coil regions of the machine on the deformation is studied by comparing results obtained with and without inclusion of the stress into the calculation. The work attests the acceptability of an energy-based magneto-mechanical model for a 2D mesh of two different rotating electrical machines.