DOI QR코드

DOI QR Code

Contribution of Maxwell Stress in Air on the Deformations of Induction Machines

  • Fonteyn, K.A. (Dept. of Electrical Engineering, Aalto University) ;
  • Belahcen, A. (Dept. of Electrical Engineering, Aalto University) ;
  • Rasilo, P. (Dept. of Electrical Engineering, Aalto University) ;
  • Kouhia, R. (Dept. of Structural Engineering and Building Technology, Aalto University) ;
  • Arkkio, A. (Dept. of Electrical Engineering, Aalto University)
  • Received : 2010.12.22
  • Accepted : 2011.12.03
  • Published : 2012.05.01

Abstract

Deformations in a cage-induction machine are investigated with simulations. The contribution of the Maxwell stress in the air gap and coil regions of the machine on the deformation is studied by comparing results obtained with and without inclusion of the stress into the calculation. The work attests the acceptability of an energy-based magneto-mechanical model for a 2D mesh of two different rotating electrical machines.

Keywords

References

  1. Bloch, F., 1932, "Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika", Zeitschrift für Physik A Hadrons and Nuclei, Vol. 74, No. 4-5, pp. 295-335.
  2. Bozorth, R.M, Williams, 1945, H.J., "Effect of Small Stresses on Magnetic Properties", Reviews of Modern Physics, Vol. 17, No, 1.
  3. Bozorth, R.M., Hamming, R.W., 1953, "Measurement of Magnetostriction in Single Crystals", Physical Review, Vol. 89, No. 4, pp. 865-869. https://doi.org/10.1103/PhysRev.89.865
  4. IEEE Std 100, 1996. The IEEE standard dictionary of electrical and electronics terms. Institute of Electrical and Electronics Engineers, Library MARC record, 6th edition, 1278 pages.
  5. K. Delaere, 2002. Computational and Experimental Analysis of Electric Machine Vibrations caused by Magnetic Forces and Magnetostriction. Doctoral dissertation. Katholieke Universiteit Leuven, Leuven, Belgium.
  6. A. Dorfmann, Ogden R. W., 2003, "Magneto-elastic Modelling of Elastomers", Europ. J. Mech. A/Sol., Vol. 22, pp. 497-507. https://doi.org/10.1016/S0997-7538(03)00067-6
  7. A. Dorfmann, Ogden R.W., Saccomandi, G., 2004, "Universal relations for non-linear magnetoelastic solids", Int. J. Non-Lin. Mech., Vol. 39, pp. 1699-1708. https://doi.org/10.1016/j.ijnonlinmec.2004.03.002
  8. A. J. M. Spencer, 1971, Theory of Invariants, Continuum Physics, Eringer A. C. (editor), Academic Press, New York, Vol. 1, pp. 239-353
  9. K. Fonteyn, A. Belahcen, R. Kouhia, P. Rasilo and A. Arkkio, "FEM for directly coupled magnetomechanical phenomena in electrical machines", IEEE Transactions on Magnetics, Vol.: 46, No. 8, 2010.
  10. A. Belahcen, "Magnetoelastic coupling in rotating electrical machines", IEEE Transactions on Magnetics, Vol. 41, No.5, pp.1624-7, 2005. https://doi.org/10.1109/TMAG.2005.846123
  11. A. Belahcen, K. Fonteyn, A. Hannukainen, R. Kouhia, "On numerical modeling of coupled magnetoelastic problem", Proceedings of the 21st Nordic Seminar on Computational Mechanics, Trondheim, 2008, T. Kvamsdal, K.M. Mathisen and B. Pettersen (editors), pp. 203-206.
  12. S. Fortino, R. Kouhia, A. Belahcen, K. Fonteyn, "A coupled model for magnetostriction in ferromagnetic materials", International Conference on Computational Methods for Coupled Problems in Science and Engineering. Barcelona, Spain, 2007, pp. 483-486.
  13. K. Fonteyn, A. Belahcen, P. Rasilo, R. Kouhia, and A. Arkkio "Simulated Results and Experimental Verification of a Novel Magneto-Mechanical Coupled Method", proceedings of ICEMS 2010, 10-13 October 2010, Seoul, Korea.

Cited by

  1. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
  2. Magnetomechanical coupled FE simulations of rotating electrical machines vol.32, pp.5, 2013, https://doi.org/10.1108/COMPEL-04-2013-0109
  3. Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
  4. Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
  5. Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
  6. Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095