• Title/Summary/Keyword: magneto-current

Search Result 158, Processing Time 0.039 seconds

Vibration Control of a Passenger Vehicle Featuring MR Suspension Units (MR 현가장치를 장착한 승용 차량의 진동제어)

  • 이환수;최승복;이순규
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • This paper presents vibration control performance of a passenger vehicle featuring magneto-rheological (MR) suspension units. As a first step, a cylindrical shock absorber is designed and manufactured on the basis of Bingham Property of a commercially available MR fluid. After verifying that the damping force of the shock absorber can be controlled by the intensity of magnetic field(or input current), it is applied to a full-car model. An optimal controller is then formulated to effectively suppress unwanted vibration of the vehicle system. The control performances are evaluated via hardware-in-the-loop simulation(HILS), and presented in both time and frequency domains.

  • PDF

Calculation of Temperature Rise in Gas Insulated Busbar by Coupled Magneto-Thermal-Fluid Analysis

  • Kim, Hong-Kyu;Oh, Yeon-Ho;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.510-514
    • /
    • 2009
  • This paper presents the coupled analysis method to calculate the temperature rise in a gas insulated busbar (GIB). Harmonic eddy current analysis is carried out and the power losses are calculated in the conductor and enclosure tank. Two methods are presented to analyze the temperature distribution in the conductor and tank. One is to solve the thermal conduction problem with the equivalent natural convection coefficient and is applied to a single phase GIB. The other is to employ the computational fluid dynamics (CFD) tool which directly solves the thermal-fluid equations and is applied to a three-phase GIB. The accuracy of both methods is verified by the comparison of the measured and calculated temperature in a single phase and three-phase GIB.

Vibration Attenuation of a Drum-Typed Washing Machine Using Magneto-Rheological Dampers (MR 댐퍼를 사용한 드럼세탁기의 진동완화)

  • Cha, Sang-Tae;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Most washing machines are now produced as a drum-type, where a washing drum mounted on a suspension system with springs and dampers, to minimize the transmittance of the vibration from the drum to the frame. A low-cost MR damper, using magneto-rheological fluids, can produce variable damping forces by changing the current values in the magnetic coil. Experimental results show the comparison of the vibration attenuation performances between two different dampers. One test set-up uses a passive damper and another one uses a MR fluid damper. The test results showed that the vibration amplitude of the washing machine with the MR damper is much smaller than the case with the passive damper.

Existence of a vortex-glass phase transition in an optimally doped BaFe1.8Co0.2As2 single crystal

  • Choi, Ki-Young;Kim, Kee Hoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.16-19
    • /
    • 2013
  • The magneto-resistivity and electric field-current density (E-J) curves were investigated up to a magnetic field 9 T in the optimally doped $BaFe_{1.8}Co_{0.2}As_2$ single crystal with a superconducting temperature ($T_c$) of 24.6 K. The E-J Scaling behaviors below and above vortex glass transition temperature ($T_g$) were found, confirming the existence of the vortex glass phase transition. The critical exponents for the diverging spatial and time correlations at $T_g$, were obtained as v = $1.1{\pm}0.1$ and z = $4.5{\pm}0.3$, respectively. The obtained critical exponents are in good agreement with the predicted values of v ~ 1 - 2 and z > 4 within the 3D vortex glass theory.

Topology Optimization of Magneto-thermal Systems Considering Eddy Current as Joule Heat (와전류를 열원으로 고려한 자계-열계 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.651-652
    • /
    • 2006
  • This research presents a topology optimization for manipulating the main heat flow in coupled magneto-thermal systems. The heat generated by eddy currents is considered in the design domain assuming an adiabatic boundary. For a practical optimization, the convection condition is considered in the topological process of the thermal field. Topology design sensitivity is derived by employing the discrete system equations combined with the adjoint variable method. As numerical examples, a simple iron and a C-core design heated-up by eddy currents demonstrate the strength of the proposed approach to solve the coupled problem.

  • PDF

A Study on Design for High-torque MR(Magnetorheological) Brake (MR 브레이크 고출력화 설계에 관한 연구)

  • Park, J.H.;Seo, M.Y.;Lee, H.S.;Ham, Y.B.;Yun, S.N.;Seo, E.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.105-108
    • /
    • 2010
  • In this study, a MR(Magneto-rheological) brake to obtain high torque-to-size ratio instead of conventional powder brake is presented for high-tension control of converting machinery such as coater, slitter and so on. First, to obtain the higher performance than conventional powder brake, a MR brake with a modified rotor shape is newly designed and analyzed by using electromagnetic field analysis. Second, a prototype of the MR brake is fabricated with the optimized structural parameters and an experimental apparatus is constructed. Finally, basic characteristics between current and torque are experimentally investigated.

  • PDF

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok;Yun, Sang-Jun;Moon, Joon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.8-10
    • /
    • 2015
  • The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.

Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.315-327
    • /
    • 2021
  • Here, in this research we have studied a two dimensional problem in a homogeneous orthotropic magneto-thermoelastic medium with higher order dual-phase-lag heat transfer with combined effects of rotation and hall current in generalized thermoelasticity due to time harmonic sources. As an application the bounding surface is subjected to uniformly distributed and concentrated loads (mechanical and thermal source). Fourier transform technique is used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to obtain the results in physical domain. The effect of frequency has been depicted with the help of graphs.

Thomson Effect in Magneto-Thermoelastic Material with Hyperbolic two temperature and Modified Couple Stress Theory

  • Iqbal, Kaur;Kulvinder, Singh
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.851-863
    • /
    • 2022
  • This research deals with the study of the Thomson heating effect in magneto-thermoelastic homogeneous isotropic rotating medium, influenced by linearly distributed load and as a result of modified couple stress theory. The charge density is taken as a function of the time of the induced electric current. The heat conduction equation with energy dissipation and with hyperbolic two-temperature (H2T) is used to formulate the model of the problem. Laplace and Fourier transforms are used to solve this mathematical model. Various components of displacement, temperature change, and axial stress as well as couple stress are obtained from the transformed domain. To get the solution in physical domain, numerical inversion techniques have been employed. The Thomson effect with GN (Green-Nagdhi) -III theory and Modified Couple Stress Theory (MCST) is shown graphically on the physical quantities.

Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.529-537
    • /
    • 2022
  • The present research is to study the effect of inclined load in a two-dimensional homogeneous orthotropic magneto-thermoelastic solid without energy dissipation with fractional order heat transfer in generalized thermoelasticity with two-temperature. We obtain the solution to the problem with the help of Laplace and Fourier transformations. The field equations of displacement components, stress components and conductive temperature are computed in transformed domain. Further the results are computed in physical domain by using numerical inversion method. The effect of fractional order parameter and inclined load has been depicted on the resulting quantities with the help of graphs.