DOI QR코드

DOI QR Code

Existence of a vortex-glass phase transition in an optimally doped BaFe1.8Co0.2As2 single crystal

  • Choi, Ki-Young (CeNSCMR, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Kee Hoon (CeNSCMR, Department of Physics and Astronomy, Seoul National University)
  • Received : 2013.06.17
  • Accepted : 2013.06.30
  • Published : 2013.06.30

Abstract

The magneto-resistivity and electric field-current density (E-J) curves were investigated up to a magnetic field 9 T in the optimally doped $BaFe_{1.8}Co_{0.2}As_2$ single crystal with a superconducting temperature ($T_c$) of 24.6 K. The E-J Scaling behaviors below and above vortex glass transition temperature ($T_g$) were found, confirming the existence of the vortex glass phase transition. The critical exponents for the diverging spatial and time correlations at $T_g$, were obtained as v = $1.1{\pm}0.1$ and z = $4.5{\pm}0.3$, respectively. The obtained critical exponents are in good agreement with the predicted values of v ~ 1 - 2 and z > 4 within the 3D vortex glass theory.

Keywords

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., vol. 130, pp. 3296, 2008. https://doi.org/10.1021/ja800073m
  2. X. H. Chen, T. Wu, G. Wu. R. H. Liu, H. Chen, and D. F. Fang, Nature, vol. 453, pp. 761, 2008. https://doi.org/10.1038/nature07045
  3. G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett., vol. 100, pp. 247002, 2008. https://doi.org/10.1103/PhysRevLett.100.247002
  4. Z. A.. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett., vol. 82, pp. 57002, 2008. https://doi.org/10.1209/0295-5075/82/57002
  5. Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L. L. Sun, and Z. X. Zhao, Mater. Res. Innov., vol. 12, pp. 105, 2008. https://doi.org/10.1179/143307508X333686
  6. J. Yang, Z. C. Li, W. Lu, W. Yi, X. L. Shen, Z. A. Ren, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Supercond. Sci. Technol., vol. 21, pp. 082001, 2008. https://doi.org/10.1088/0953-2048/21/8/082001
  7. J. A. Rodgers, G. Penny, A. Marcinkova, J. Bos, D. Sokolov, A. Kusmartseva, A. Huxley, and J. Attfield, Phys. Rev. B, vol. 80, pp. 052508, 2009. https://doi.org/10.1103/PhysRevB.80.052508
  8. Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou and Z.-X. Zhao, Chin. Phys. Lett., vol. 25, pp. 2215, 2008. https://doi.org/10.1088/0256-307X/25/6/080
  9. P. Cheng, B. Shen, G. Mu, X. Zhu, F. Han, B. Zeng, and H. H. Wen, Europhys. Lett., vol. 85, pp. 67003, 2009. https://doi.org/10.1209/0295-5075/85/67003
  10. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett., vol. 101, pp. 107006, 2008. https://doi.org/10.1103/PhysRevLett.101.107006
  11. A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett., vol. 101, pp. 117004, 2008. https://doi.org/10.1103/PhysRevLett.101.117004
  12. K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y. Y. Xue, and C. W. Chu, Phys. Rev. Lett., vol. 101, pp. 107007, 2008. https://doi.org/10.1103/PhysRevLett.101.107007
  13. J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M. Guloy, Phys. Rev. B, vol. 78, pp. 060505, 2008. https://doi.org/10.1103/PhysRevB.78.060505
  14. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett., vol. 101, pp. 057003, 2008. https://doi.org/10.1103/PhysRevLett.101.057003
  15. R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Ying, Y. J. Yan, Q. J. Li, B. C. Shi, W. S. Chu, Z. Y. Wu, and X. H. Chen, Nature, vol. 459, pp. 64, 2009. https://doi.org/10.1038/nature07981
  16. P. M. Shirage, K. Kihou, K. Miyazawa, C.-H. Lee, H..Kito, H. Eisaki, T. Yanagisawa, Y. Tanaka, and A. Iyo, Phys. Rev. Lett., vol. 103, pp. 257003, 2009. https://doi.org/10.1103/PhysRevLett.103.257003
  17. D. S. Fisher, M. P. A.. Fisher, and D. A. Huse, Phys. Rev. B, vol. 43, pp. 130, 1991. https://doi.org/10.1103/PhysRevB.43.130
  18. P. L. Gammel, L. F. Schneemeyer, and D. J. Bishop, Phys. Rev. Lett., vol. 66, pp. 953, 1991. https://doi.org/10.1103/PhysRevLett.66.953
  19. S. K. Gupta, S. Sen, A. Singh, D. K. Aswal, J. V. Yakhmi, E.-M. Choi, H.-J. Kim, K. H. P. Kim, S. Choi, H.-S. Lee, W. N. Kang, and S.-I. Lee, Phys. Rev. B, vol. 66, pp. 104525, 2002. https://doi.org/10.1103/PhysRevB.66.104525
  20. M.-O. Moon, S.-I. Lee, W. C. Lee, P. C. Canfield, B. K. Cho, and D. C. Johnston, Phys. Rev. Lett., vol. 76, pp. 2790, 1996. https://doi.org/10.1103/PhysRevLett.76.2790
  21. H. J. Kim, Y. Liu, Y. S. Oh, S. Khim, I. Kim, G. R. Stewart, and K. H. Kim, Phys. Rev. B, vol. 79, pp. 014514, 2009. https://doi.org/10.1103/PhysRevB.79.014514
  22. H.-S. Lee, M. Bartkowiak, J. S. Kim, and H.-J. Lee, Phys. Rev. B, vol. 82, pp. 104523, 2010. https://doi.org/10.1103/PhysRevB.82.104523
  23. A.I. Larkin and Yu.N. Ovchinikov, J. Low Temp. Phys., vol. 34, pp. 409, 1979. https://doi.org/10.1007/BF00117160
  24. S. H. Kim, C. H. Choi, M.-H. Jung, J.-B. Yoon, Y.-H. Jo, X. F. Wang, X. H. Chen, X. L. Wang, S.-I. Lee, and K.-Y. Choi, J. Appl. Phys., vol. 108, pp. 063916, 2010. https://doi.org/10.1063/1.3478716
  25. C. P. Bean and J. D. Livingston, Phys. Rev. Lett., vol. 12, pp. 14, 1964. https://doi.org/10.1103/PhysRevLett.12.14
  26. C. P. Bean, Rev. Mod. Phys., vol. 36, pp. 31, 1964. https://doi.org/10.1103/RevModPhys.36.31
  27. H. Yang, H. Luo, Z. Wang, and H.-H. Wen, Appl. Phys. Lett., vol. 93, pp. 142506, 2008. https://doi.org/10.1063/1.2996576
  28. Y. J. Song, J. S. Ghim, B. H. Min, Y. S. Kwon, M. H. Jung, and J.-S. Rhyee, Appl. Phys. Lett., vol. 96, pp. 212508, 2010. https://doi.org/10.1063/1.3435472
  29. Y. Yeshurun, N. Bontemps, L. Bulachkov, and A. Kapitulnik, Phys. Rev. B, vol. 49, pp. 1548, 1994. https://doi.org/10.1103/PhysRevB.49.1548
  30. Q. Huang, Y. Qiu, W. Bao, M. A. Green, J. W. Lynn, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett., vol. 101, pp. 257003, 2008. https://doi.org/10.1103/PhysRevLett.101.257003

Cited by

  1. Vortex–glass state in the isovalent optimally doped pnictide superconductor BaFe2(As0.68P0.32)2 vol.30, pp.5, 2017, https://doi.org/10.1088/1361-6668/aa62f1
  2. Transport characterization and pinning analysis of BaFe1.9Ni0.1As2.05 thin films vol.33, pp.4, 2020, https://doi.org/10.1088/1361-6668/ab72c4