• 제목/요약/키워드: magnetic storms

검색결과 51건 처리시간 0.027초

Solar Wind Dynamic Pressure during Magnetic Storms and its implications on the Dayside Ring Current Particle Loss

  • Kim, Kyungchan;Lee, Dae-Young
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.39-39
    • /
    • 2004
  • It has been known that ring current particles can be lost through dayside MP(magnetopause). However, details of the loss mechanism of this process has not received much attention. In this study, we show that the solar wind dynamic pressure P$\sub$D/ can play a significant role in the dayside loss. In order to show that, we have first conducted superposed epoch analysis using 95 geomagnetic storm events selected from the period 1997 to 2002. (omitted)

  • PDF

CLASSIFICATION OF THE INTERPLANETARY SHOCKS BY SHOCK DRIVERS

  • OH SU YEON;YI YU;NAH JA-KYUNG;CHO KYUNG-SEOK
    • 천문학회지
    • /
    • 제35권3호
    • /
    • pp.151-157
    • /
    • 2002
  • From the data of solar wind observation by ACE spacecraft orbiting the Earth-Sun Lagrangian point, we selected 48 forward interplanetary shocks(IPSs) occurred in 2000, maximum solar activity period. Examining the profiles of solar wind parameters, the IPSs are classified by their shock drivers. The significant shock drivers are the interplanetary coronal mass ejection(ICME) and the high speed stream(HSS). The IPSs driven by the ICMEs are classified into shocks driven by magnetic clouds and by ejectas based on the existence of magnetic flux rope structure and magnetic field strength. Some IPSs could be formed as the blast wave by the smaller energy and shorter duration of shock drivers such as type II radio burst. Out of selected 48 forward IPSs, $56.2\%$ of the IPSs are driven by ICME, $16.7\%$ by HSS, and $16.7\%$ of the shocks are classified into blast-wave type shocks. However, the shock drivers of remaining $10\%$ of the IPSs are unidentified. The classification of the IPSs by their driver is a first step toward investigating the critical magnitudes of the IPS drivers commencing the magnetic storms in each class.

Development of Empirical Space Weather Models based on Solar Information

  • Moon, Yong-Jae;Kim, Rok-Soon;Park, Jin-Hye;Jin, Kang
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • We are developing empirical space weather (geomagnetic storms, solar proton events, and solar flares) forecast models based on solar information. These models have been set up with the concept of probabilistic forecast using historical events. Major findings can be summarized as follows. First, we present a concept of storm probability map depending on CME parameters (speed and location). Second, we suggested a new geoeffective CME parameter, earthward direction parameter, directly observable from coronagraph observations, and demonstrated its importance in terms of the forecast of geomagnetic storms. Third, the importance of solar magnetic field orientation for storm occurrence was examined. Fourth, the relationship among coronal hole-CIR-storm relationship has been investigated, Fifth, the CIR forecast based on coronal hole information is possible but the storm forecast is challenging. Sixth, a new solar proton event (flux, strength, and rise time) forecast method depending on flare parameters (flare strength, duration, and longitude) as well as CME parameter (speed, angular width, and longitude) has been suggested. Seventh, we are examining the rates and probability of solar flares depending on sunspot McIntosh classification and its area change (as a proxy of flux change). Our results show that flux emergence greatly enhances the flare probability, about two times for flare productive sunspot regions.

  • PDF

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

Magnetic and kinematic characteristics of very fast CMEs

  • Jang, Soojeong;Moon, Yong-Jae;Lim, Daye;Lee, Jae-Ok;Lee, Harim;Park, Eunsu
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.54.2-54.2
    • /
    • 2018
  • It is important to understand very fast CMEs which are the main cause of geomagnetic storms and solar particle events (SPEs). During this solar cycle 24, there are 10 very fast CMEs whose speeds are over 2000 km/s. Among these, there were only two fronside events (2012 January 23 and 2012 March 7) and they are associated with two major flares (M8.7 and X5.4) and the most strong SPEs (6310 pfu and 6530 pfu). They have a similar characteristics: there were successive CMEs within 2 hours in the same active region. We analyze their magnetic properties using SDO HMI magnetograms and kinematic ones from STEREO EUVI/COR1/COR2 observations. We can measure their speeds and initial accelerations without projection effects because their source locations are almost the limb. Additionally, we are investigating magnetic and kinematic characteristics of 8 backside events using AI-generated magnetograms constructed by deep learning methods.

  • PDF

Storm-Time Behaviour of Meso-Scale Field-Aligned Currents: Case Study with Three Geomagnetic Storm Events

  • Awuor, Adero Ochieng;Baki, Paul;Olwendo, Joseph;Kotze, Pieter
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.133-147
    • /
    • 2019
  • Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) $B_Z$ are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at ${\sim}58^{\circ}$ coinciding with the minimum SymH and dayside at ${\sim}59^{\circ}$ compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF $B_Z$ in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.

지자기폭풍 기간 동안의 태양풍 동압력 펄스에 관한 통계적 분석 (A STATISTICAL ANALYSIS OF SOLAR WIND DYNAMIC PRESSURE PULSES DURING GEOMAGNETIC STORMS)

  • 백지혜;이대영;김경찬;최정림;문용재;조경석;박영득
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권4호
    • /
    • pp.419-430
    • /
    • 2005
  • 이 연구에서는 지자기 폭풍의 주상 기간 동안 발생하는 태양풍 동압력 펄스에 대한 통계적 분석을 하였다. 이를 위해 먼저 1997년부터 2001년까지 5년간의 기간으로부터 지자기 폭풍 지수인 Dst 값이 -50nT 이하인 지자기 폭풍을 모두 111개 얻었다. 이러한 지자기 폭풍의 주상기간 동안에 발생한 태양풍 동압력 펄스를 정확히 조사하기 위해 태양풍 자료 뿐만 아니라 지구 저위도 여러 관측소에서 관측된 지자기 수평 성분 H값을 이용하였다. 즉 동압력 펄스가 자기권에 충돌하면 저위도 H 값이 전 지구적인 증가를 보여야 한다는 사실을 이용하였다. 이러한 과정을 통해 얻은 통계적 결과는 다음과 같다. 첫째, 자기 폭풍 중에 발생하는 H의 증가는 평균적으로 그 크기가 자기 폭풍의 강도와 비례하는 경향을 보인다. 이는 강한 자기폭풍일 수록 강한 태양풍 펄스를 동반한다는 것이다. 둘째로 자기폭풍 중에 발생하는 동압력 펄스의 발생 빈도 역시 자기 폭풍의 강도와 비례한다. 셋째, 동압력 펄스 발생 빈도가 0.4회/hr 이상인, 즉 2.5시간에 1회 이상의 동압력 펄스를 동반하는, 지자기 폭풍은 여기서 다루어진 전체 지자기 폭풍 중 약 $30\%$를 차지한다. 2.5시간은 서브스톰의 평균 지속 시간으로 볼 수 있으며, 따라서 자기 폭풍중에 서브스톰이 연속적으로 발생하는 것 만큼 자주 동압력 펄스가 나타나는 자기폭풍이 전체의 $30\%$라는 것이다. 한편 이러한 동압력 펄스의 기원을 이해하기 위해 먼저 지자기 폭풍 유도체에 대해 조사하였다. 그 결과 여기서 다루어진 지자기 폭풍의 약 $65\%$가 CME(Coronal Mass Ejection)에 의해 발생되었고 CIR(Corotating Interaction Regions)과 Type II bursts에 의해 발생한 것이 각각 6.3, $7.2\%$인 것으로 나타났다. 그런데 CME에 의해 발생된 지자기폭풍 중에서 $70\%$ 이상이 그 주상 기간이 CME와 충격파 사이의 공간인 sheath 영역 혹은 CME 앞부분에 해당되는 것으로 나타났다. 따라서 이들 지자기폭풍 주상기간에 빈번히 발생하는 동압력 펄스는 CME와 충격파 사이의 sheath 영역, 그리고 CME 앞부분 영역에서의 빈번한 태양풍 밀도 증가에 기인하는 것으로 보인다.

Analysis of the Tsyganenko Magnetic Field Model Accuracy during Geomagnetic Storm Times Using the GOES Data

  • Song, Seok-Min;Min, Kyungguk
    • Journal of Astronomy and Space Sciences
    • /
    • 제39권4호
    • /
    • pp.159-167
    • /
    • 2022
  • Because of the small number of spacecraft available in the Earth's magnetosphere at any given time, it is not possible to obtain direct measurements of the fundamental quantities, such as the magnetic field and plasma density, with a spatial coverage necessary for studying, global magnetospheric phenomena. In such cases, empirical as well as physics-based models are proven to be extremely valuable. This requires not only having high fidelity and high accuracy models, but also knowing the weakness and strength of such models. In this study, we assess the accuracy of the widely used Tsyganenko magnetic field models, T96, T01, and T04, by comparing the calculated magnetic field with the ones measured in-situ by the GOES satellites during geomagnetically disturbed times. We first set the baseline accuracy of the models from a data-model comparison during the intervals of geomagnetically quiet times. During quiet times, we find that all three models exhibit a systematic error of about 10% in the magnetic field magnitude, while the error in the field vector direction is on average less than 1%. We then assess the model accuracy by a data-model comparison during twelve geomagnetic storm events. We find that the errors in both the magnitude and the direction are well maintained at the quiet-time level throughout the storm phase, except during the main phase of the storms in which the largest error can reach 15% on average, and exceed well over 70% in the worst case. Interestingly, the largest error occurs not at the Dst minimum but 2-3 hours before the minimum. Finally, the T96 model has consistently underperformed compared to the other models, likely due to the lack of computation for the effects of ring current. However, the T96 and T01 models are accurate enough for most of the time except for highly disturbed periods.

IMPACT OF THE ICME-EARTH GEOMETRY ON THE STRENGTH OF THE ASSOCIATED GEOMAGNETIC STORM: THE SEPTEMBER 2014 AND MARCH 2015 EVENTS

  • Cho, K.S.;Marubashi, K.;Kim, R.S.;Park, S.H.;Lim, E.K.;Kim, S.J.;Kumar, P.;Yurchyshyn, V.;Moon, Y.J.;Lee, J.O.
    • 천문학회지
    • /
    • 제50권2호
    • /
    • pp.29-39
    • /
    • 2017
  • We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm ($Dst_{min}{\sim}-75nT$) driven by the X1.6 high speed flare-associated CME ($1267km\;s^{-1}$) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm ($Dst_{min}{\sim}-223nT$) caused by a CME with moderate speed ($719km\;s^{-1}$) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long-duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.

RECURRENT PATTERNS IN DST TIME SERIES

  • Kim, Hee-Jeong;Lee, Dae-Young;Choe, Won-Gyu
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권2호
    • /
    • pp.101-108
    • /
    • 2003
  • This study reports one approach for the classification of magnetic storms into recurrent patterns. A storm event is defined as a local minimum of Dst index. The analysis of Dst index for the period of year 1957 through year 2000 has demonstrated that a large portion of the storm events can be classified into a set of recurrent patterns. In our approach, the classification is performed by seeking a categorization that minimizes thermodynamic free energy which is defined as the sum of classification errors and entropy. The error is calculated as the squared sum of the value differences between events. The classification depends on the noise parameter T that represents the strength of the intrinsic error in the observation and classification process. The classification results would be applicable in space weather forecasting.