DOI QR코드

DOI QR Code

Storm-Time Behaviour of Meso-Scale Field-Aligned Currents: Case Study with Three Geomagnetic Storm Events

  • Awuor, Adero Ochieng (Department of Physics and Space Science, Technical University of Kenya) ;
  • Baki, Paul (Department of Physics and Space Science, Technical University of Kenya) ;
  • Olwendo, Joseph (Department of Mathematics and Physical Sciences, Pwani University) ;
  • Kotze, Pieter (South Africa National Space Agency, SANSA Space Center)
  • Received : 2019.07.20
  • Accepted : 2019.08.26
  • Published : 2019.09.15

Abstract

Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) $B_Z$ are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at ${\sim}58^{\circ}$ coinciding with the minimum SymH and dayside at ${\sim}59^{\circ}$ compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF $B_Z$ in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.

Keywords

References

  1. Anderson BJ, Ohtani SI, Korth H, Ukhorskiy A, Storm time dawndusk asymmetry of the large-scale Birkeland currents, Space Phys. 110, A12 (2005). https://doi.org/10.1029/2005JA011246
  2. Anderson BJ, Takahashi K, Kamei T, Waters CL, Toth BA, Birkeland current system key parameters derived from Iridium observations: Method and initial validation results, J. Geophys. Res. 107, 1079 (2002). https://doi.org/10.1029/2001JA000080
  3. Benkevich L, Lyatsky W, Cogger LL. Field-aligned currents between conjugate hemispheres, J. Geophys. Res. 105, 27, 27727-27737 (2000). https://doi.org/10.1029/2000ja900095
  4. Boudouridis A, Zesta E, Lyons LR, Anderson PC, Lummerzheim D. Effect of solar wind pressure pulses on the size and strength of the auroral oval, J. Geophys. Res. 108, 8012 (2003). https://doi.org/10.1029/2002JA009373
  5. Burch JL, Reiff PH, Menietti JD, Heelis RA, Hanson WB, et al., IMF by-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 1. Dynamics explorer observations, J. Geophys. Res. 90, 1577-1593 (1985). https://doi.org/10.1029/JA090iA02p01577
  6. Bythrow PF, Potemra TA, Zanetti LJ, Variation of the auroral Birkeland current pattern associated with the north-south component of the IMF, Magnetos. Curr. 28, 131-136 (1984). https://doi.org/10.1029/GM028p0131
  7. Cowley SWH, Magnetosphere-ionosphere interactions: A tutorial review, Magnetos. Curr. Syst. 118, 91-106 (2000). https://doi.org/10.1029/GM118p0091
  8. Du AM, Tsurutani BT, Sun W, Solar wind energy input during prolonged, intense northward interplanetary magnetic fields: A new coupling function, J. Geophys. Res. 116, A12215 (2011). https://doi.org/10.1029/2011JA016718
  9. Emmert JT, Richmond AD, Drob DP, A computationally compact representation of magnetic-apex and Quasi-Dipole coordinates with smooth base vectors, J. Geophys. Res. 115, A08322 (2010). https://doi.org/10.1029/2010JA015326
  10. Fujii R, Fukunishi H, Kokubun S, Sugiura M, Tohyama F, et al., Field-aligned current signatures during the March 13-14, 1989, Great Magnetic Storm, J. Geophys. Res. 97, 10703- 10715 (1992). https://doi.org/10.1029/92JA00171
  11. Iijima T, Potemra TA, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad, J. Geophys. Res. 81, 2165-2174 (1976). https://doi.org/10.1029/JA081i013p02165
  12. Iijima T, Potemra TA, Large-scale characteristics of field-aligned currents associated with substorms, J. Geophys. Res. 83, 599- 615 (1978). https://doi.org/10.1029/JA083iA02p00599
  13. Iijima T, Potemra TA, Zanetti LJ, Bythrow PF, Large-scale Birkeland currents in the dayside polar region during strongly northward IMF: A new Birkeland current system, J. Geophys. Res. 89, 7441-7452 (1984). https://doi.org/10.1029/JA089iA09p07441
  14. Le G, Luhr H, Anderson BJ, Strangeway RJ, Russell CT, Magnetopause erosion during the 17 March 2015 magnetic storms: Combined field-aligned currents, auroral oval, and magnetopause observations, Geophys. Res. Lett. 43, 2396-2404 (2016). https://doi.org/10.1002/2016GL068257
  15. Luhr H, Warnecke JF, Rother MKA, An algorithm for estimating field-aligned currents from single spacecraft magnetic field measurements : A diagnostic tool applied to frej satellite data, IEEE Trans. Geosci. Remote. Sens. 34, 1369-1376 (1996). https://doi.org/10.1109/36.544560
  16. Lundstedt H, Gleisner H, Wintoft P, Operational forecasts of the geomagnetic Dst index, Geophys. Res. Lett. 29, 2181 (2002). https://doi.org/10.1029/2002gl016151
  17. Lyatskaya S, Khazanov GV, Zesta E, Interhemisphericfield-aligned currents: Simulation results, J. Geophys. Res. Space Phys. 5600-5612 (2014). https://doi.org/10.1002/2013JA019558
  18. Maus S, Lühr H, Rother M, Hemant K, Balasis G, Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements, Geochem. Geophys. Geosyst. 8, Q05013 (2007). https://doi.org/10.1029/2006gc001521
  19. Maus S, Luhr H, Balasis G, Rother M, Mandea M, Introducing POMME, the POtsdam magnetic model of the earth, in Earth Observation with CHAMP: Results from Three Years in Orbit, eds. Reigber C, Luhr H, Schwintzer P, Wickert J (Springer, Berlin, 2005) 293-298. https://doi.org/10.1007/3-540-26800-6_46
  20. Maus S, Weidelt P, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth, Geophys. Res. Lett. 31, L12614 (2004). https://doi.org/10.1029/2004GL020232
  21. Maus S, Yin F, Luhr H, Manoj C, Rother M, et al., Resolution of direction of oceanic magnetic lineations by the sixthgeneration lithospheric magnetic field model from CHAMP satellite magnetic measurements, Geochem. Geophys. Geosyst. 9, Q07021 (2008). https://doi.org/10.1029/2008GC001949
  22. Mcgranaghan RM, Mannucci AJ, Forsyth C, A comprehensive analysis of multiscale field-aligned currents: Characteristics, controlling parameters, and relationships, J. Geophys. Res. Space Phys. 11931-11960 (2017). https://doi.org/10.1002/2017JA024742
  23. Meng CI, Dynamic variation of the auroral oval during intense magnetic storms, J. Geophys. Res. 89, 227-235 (1984). https://doi.org/10.1029/JA089iA01p00227
  24. Milan SE, A simple model of the flux content of the distant magnetotail, J. Geophys. Res. 109, A07210 (2004) https://doi.org/10.1029/2004JA010397
  25. Mishin VM, Mishin VV, Moiseev AV, Distribution of the fieldaligned currents in the ionosphere: Dawn-dusk asymmetry and its relation to the asymmetry between the two hemispheres, Geomagn. Aeron. 56, 524-534 (2016). https://doi.org/10.1134/S0016793216050091
  26. Ohtani S, Ueno G, Higuchi T. Comparison of large-scale fieldaligned currents under sunlit and dark ionospheric conditions, J. Geophys Res. 110, 1-14 (2005). https://doi.org/10.1029/2005JA011057
  27. Palmroth M, Janhunen P, Pulkkinen TI, Koskinen HEJ, Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results, Ann. Geophys. 22, 549-566 (2004). https://doi.org/10.5194/angeo-22-549-2004
  28. Papitashvili, VO, Christiansen F, Neubert T, A new model of field-aligned currents derived from high-precision satellite magnetic field data, Geophys. Res. Lett. 29, 1683 (2002). https://doi.org/10.1029/2001GL014207
  29. Reigber C, Luhr H, Schwintzer P, CHAMP mission status, Adv. Space Res. 30, 129-134 (2002). https://doi.org/10.1016/ S0273-1177(02)00276-4
  30. Richmond AD, Ionospheric electrodynamics using magnetic apex coordinates, J. Geomagn. Geoelectr. 47, 191-212 (1995). https://doi.org/10.5636/jgg.47.191
  31. Shue JH, Song P, Russell CT, Steinberg JT, Chao JK, et al., Magnetopause location under extreme solar wind conditions, J. Geophys. Res. 103, 17691-17700 (1998). https://doi.org/10.1029/98ja01103
  32. Wang C, Li CX, Huang ZH, Richardson JD, Effect of interplanetary shock strengths and orientations on storm sudden commencement rise times, Geophys. Res. Lett. 33, 3-5 (2006). https://doi.org/10.1029/2006GL025966
  33. Wang H, Lühr H, Ma SY, Solar zenith angle and merging electric field control of field-aligned currents: A statistical study of the Southern Hemisphere, J. Geophys. Res. 110, A03306 (2005). https://doi.org/10.1029/2004JA010530
  34. Wang H, Lühr H, Ma SY, Weygand J, Skoug RM, et al., Fieldaligned currents observed by CHAMP during the intense 2003 geomagnetic storm events, Ann. Geophys. 24, 311-324 (2006). https://doi.org/10.5194/angeo-24-311-2006
  35. Yeh HC, Foster JC, Rich FJ, Swider W, Storm time electric field penetration observed at mid-latitude, J. Geophys. Res. 96, 5707-5721 (1991). https://doi.org/10.1029/90ja02751
  36. Yizengaw E, Dyson PL, Essex EA, Moldwin MB, Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data, Ann. Geophys. 23, 707-721 (2005). https://doi.org/10.5194/angeo-23-707-2005