• Title/Summary/Keyword: magnetic scale

Search Result 696, Processing Time 0.033 seconds

Comparing the statistics of isothermal compressible turbulence in simulation : Single versus Double forcing

  • Yoo, Hyun-Ju;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.108.1-108.1
    • /
    • 2011
  • Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium(ISM) and the intracluster medium(ICM). There are many driving mechanisms which can inject energy into the fluid in variety driving scales, But the plausible driving scale of ISM/ICM turbulence are yet unknown. Therefore, understanding different statistical properties between turbulence with single driving scale and turbulence with double driving scale is required. In this work, we performed 3-dimensional isothermal compressible, magnetohydrodynamic(MHD) turbulence simulations. We drive turbulence in the Fourier space in two ranges, 2

  • PDF

One Case of Facial Nerve Palsy in Herpes Zoster Oticus Treated with electromagnetic therapy stimulator(Whata153) (자기장과 전기 조합 자극기(Whata 153)를 이용한 이성대상포진 안면신경마비 치료 1례 보고)

  • Jo, Seong-Eun;Lee, Hyun
    • Journal of Haehwa Medicine
    • /
    • v.25 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • Objectives : The purpose of this study was to report a case of a patient efficacy of electromagnetic acupuncture using Whata 153 in facial nerve palsy in Herpes zoster oticus. Methods : We treated the patient with magnetic acupuncture combined with electro-acupuncture. Acupuncture points were at the face (BL2, GB14, TE23, ST4, ST6, ST3). All the acupuncture points were stimulated with magnetic field and 4 of them were combined with electro-acupuncture. Results & Conclusions : The improvement of facial movement and symptom was evaluated by Yanagihara grading system(Y-system), House-Brackmann scale(HB scale) and Sunnybrook facial grading system(SFGS). After treatment, all of the scales(Y-system, HB scale and SFGS) and symptom of the patient were improved. From the above results, we suggest that magnetic acupuncture and electro-acupuncture might be effective on facial nerve palsy in Herpes zoster oticus.

GENERATION OF MAGNETIC FIELDS IN COSMOLOGICAL SHOCKS

  • MEDVEDEV MIKHAIL V.;SILVA LUIS O.;FIORE MASSIMILIANO;FONSECA RICARDO A.;MORI WARREN B.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.533-541
    • /
    • 2004
  • The origin of magnetic fields in the universe remains an outstanding problem in cosmology. We propose that these fields are produced by shocks during the large-scale structure formation. We discuss the mechanism of the field generation via the counter-streaming (Weibel) instability. We also show that these Weibel-generated fields are long-lived and weakly coupled to dissipation. Subsequent field amplification by the intra-cluster turbulence may also take place, thus maintaining the magnetic energy density close to equipartition.

MHD turbulence in expanding/collapsing media

  • Park, Jun-Seong;Ryu, Dong-Su;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We investigate driven magnetohydrodynamic (MHD) turbulence by including the effects of expansion and collapse of background medium. The main goal is to quantify the evolution and saturation of strength and characteristic lengths of magnetic fields in expanding and collapsing media. Our findings are as follows. First, with expansion and collapse of background medium, the magnetic energy density per comoving volume does not saturate; either it keeps decreasing or increasing with time. The magnetic energy density relative to the kinetic energy density strongly depends on the expanding or collapsing rate. Second, at scales close to the energy injection (or driving) scale, the slope of magnetic field power spectrum shallows with expansion but steepens with collapse. Third, various characteristic lengths, relative to the energy injection scale, decrease with expansion but increase with collapse. We discuss the astrophysical implications of our findings.

  • PDF

PRIMORDIAL BLACKHOLE AS A SEED FOR THE COSMIC MAGNETIC FIELD

  • LA DAIL;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 1996
  • We present a model that rotating primordial blackholes(PBHs) produced at the end of inflation generate the random, non-oriented primordial magnetic field. PBHs are copiously produced as the Universe completes the cosmic phase transition via bubble nucleation and tunneling processes in the extended inflation hypothesis. The PBHs produced acquire angular momentum through the mutual tidal gravitational interaction. For PBHs of mass less than 1013g, one can show that the evaporation (photon) luminosity of PBHs exceeds the Eddington limit. Thus throughout the lifetime of the rotating PBH, radiation flow from the central blackhole along the Kerr-geodesic exerts torque to ambient plasma. In the process similar to the Bierman's battery mechanism electron current reaching up to the horizon scale is induced. For PBHs of Grand Unified Theories extended inflation with the symmetry breaking temperature of $T_{GUT}\;\~\;10^{10}$ GeV, which evaporate near decoupling, we find that they generate random, non-oriented magnetic fields of $\~10^{-11}G$ on the last-scattering surface on (the present comoving) scales of $\~O(10)Mpc$.

  • PDF

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Ca II Transient Brightenings associated with Canceling Magnetic Features

  • Park, So-Young;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.96.2-96.2
    • /
    • 2011
  • We analyzed transient Ca II brightening associated with small-scale canceling magnetic features in the quiet Sun near disk center using Ca II H and NaD1 filter images of the SOT/Hinode. We found that in most Ca II brightening related to CMFs the Ca II intensity peaks after magnetic flux cancellation proceeds. Moreover, brightening tend to appear as pairs of bright points of similar size and similar brightness overlying magnetic bipoles. These results imply that magnetic reconnection taking place in the chromosphere or above may be in charge of CMFs.

  • PDF

Modeling of a Non-contact Type Precision Magnetic Displacement Sensor (비접촉식 정밀 변위 측정용 자기센서 모델링)

  • Shin, Woo-Cheol;Hong, Jun-Hee;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

Effect of Magnetic Field Therapy Applied to Acupuncture Point on Dysmenorrhea Experienced by High School Girls (경혈점에 적용한 자장요법이 여고생의 월경통에 미치는 효과)

  • Jang, Hyun-Jung;Park, Jeong-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7367-7376
    • /
    • 2015
  • This study was investigate the effects of the magnetic field therapy applied to the acupuncture point on dysmenorrhea experienced by high school girls and to verify the possibility to use this therapy as an effective in-home nursing intervention. Data were collected from Feburary to April, 2006. The research procedure was that female students who visited in public health center had to fill in questionnaires with dysmenorrhea Grapic Rating Scale(GRS) and Adjective Labor Pain Rating Scale(ALPRS), the gauge of pain, before participating the experiment. And then each group was tested for 3 hours. Participants before and after applying magnetic treatment filled each questionnaires with dysmenorrhea GRS and ALPRS. The GRS points and ALPRS points in the experimental group, applied by Magnetic Field therapy on acupuncture point is lower than that in the comparison group. The above result has proved that the magnetic field therapy on acupuncture has an effect on the pain alleviation of dysmenorrhea of female students in high school. Therefore, propose this therapy to dysmenorrhea of female students. In this research, ALPRS indicated validity on dysmenorrhea, so for verifying validity, further research is necessary.

Critical Characteristics Estimation of a Large-Scale HTS Wind Turbine Generator Using a Performance Evaluation System

  • Kim, Taewon;Woo, Sang-Kyun;Kim, Changhyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Large-scale High Temperature Superconducting (HTS) wind power generators suffer from high electromagnetic force and high torque due to their high current density and low rotational speed. Therefore, the torque and Lorentz force of HTS wind power generators should be carefully investigated. In this paper, we proposed a Performance Evaluation System (PES) to physically test the structural stability of HTS coils with high torque before fabricating the generator. The PES is composed of the part of a pole-pair of the HTS generator for estimating the characteristic of the HTS coil. The 10 MW HTS generator and PES were analyzed using a 3D finite element method software. The performance of the HTS coil was evaluated by comparing the magnetic field distributions, the output power, and torque values of the 10 MW HTS generator and the PES. The magnetic flux densities, output power, and torque values of the HTS coils in the PES were the same as a pole-pair of the 10 MW HTS generator. Therefore, the PES-based evaluation method proposed in this paper can be used to estimate the critical characteristics of the HTS generator under high magnetic field and high torque before manufacturing the HTS wind turbines. These results will be used effectively to research and manufacture large-scale HTS wind turbine generators.