DOI QR코드

DOI QR Code

GENERATION OF MAGNETIC FIELDS IN COSMOLOGICAL SHOCKS

  • MEDVEDEV MIKHAIL V. (Department of Physics and Astronomy, University of Kansas, Institute for Nuclear Fusion, RRC 'Kurchatov Institute') ;
  • SILVA LUIS O. (GoLP/Centro de Fisica de Plasmas, Instituto Superior Tecnico) ;
  • FIORE MASSIMILIANO (GoLP/Centro de Fisica de Plasmas, Instituto Superior Tecnico) ;
  • FONSECA RICARDO A. (GoLP/Centro de Fisica de Plasmas, Instituto Superior Tecnico) ;
  • MORI WARREN B. (Department of Physics and Astronomy, University of California)
  • Published : 2004.12.01

Abstract

The origin of magnetic fields in the universe remains an outstanding problem in cosmology. We propose that these fields are produced by shocks during the large-scale structure formation. We discuss the mechanism of the field generation via the counter-streaming (Weibel) instability. We also show that these Weibel-generated fields are long-lived and weakly coupled to dissipation. Subsequent field amplification by the intra-cluster turbulence may also take place, thus maintaining the magnetic energy density close to equipartition.

Keywords

References

  1. Biermann, P. 1950, Z. Naturf. A., 5, 65
  2. Biskamp, D., & Bremer, U. 1994, Phys. Rev. Lett., 72, 3819 https://doi.org/10.1103/PhysRevLett.72.3819
  3. Field, G. B., & Carroll, S. M. 2000, Phys. Rev. D, 62, 103008
  4. Fonseca, R. A., et al. 2002, Lecture Notes in Computer Science 2329, III-342 (Heidelberg: Springer-Verlag)
  5. Frederiksen, J. T., Hededal, C. B., Haugb$\phi$lle, T., & Nordlund, A. $\AA$. 2004, ApJL, 608, L13 https://doi.org/10.1086/421262
  6. Gasperini, M., Giovannini, M., & Veneziano, G. 1995, Phys. Rev. Lett., 75, 3769
  7. Gnedin, N. Y., Ferrara, A., & Zweibel, E. G. 2000, ApJ, 539,505 https://doi.org/10.1086/309272
  8. Harrison, E. R. 1970, MNRAS, 147, 279 https://doi.org/10.1093/mnras/147.3.279
  9. Medvedev, M. V., & Loeb, A. 1999, ApJ, 526, 697 https://doi.org/10.1086/308038
  10. Medvedev, M. V., Fiore, M., Fonseca, R. A., Silva, L. A., & Mori, W.B. 2005, ApJ, submitted
  11. Moiseev, S. S., & Sagdeev, R. Z. 1963, J. Nucl. Energy C, 5,43 https://doi.org/10.1088/0368-3281/5/1/309
  12. Nishikawa, K.-I., Hardee, P., Richardson, G., Preece, R., Sol, H., & Fishman, G. J. 2003, ApJ, 595, 555 https://doi.org/10.1086/377260
  13. Quashnock, J. M., Loeb, A., & Spergel, D. N. 1989, ApJ, 344, L49 https://doi.org/10.1086/185528
  14. Ratra, B. 1992, ApJ, 391, L1 https://doi.org/10.1086/186384
  15. Sicotte, H. 1997, MNRAS, 287, 1 https://doi.org/10.1093/mnras/287.1.1
  16. Sigl, G. 2002, Phys. Rev. D, 66,123002 https://doi.org/10.1103/PhysRevD.66.123002
  17. Sigl, G., Olinto, A. V., & Jedamnik, K. 1997, Phys. Rev. D, 55,4582 https://doi.org/10.1103/PhysRevD.55.4582
  18. Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B., & Medvedev, M. V. 2003, ApJ, 596, L121 https://doi.org/10.1086/379156
  19. Vachaspati, V. 1991, Phys. Lett. B, 265, 258 https://doi.org/10.1016/0370-2693(91)90051-Q

Cited by

  1. On particle transport in Weibel generated magnetic fluctuations vol.15, pp.5, 2008, https://doi.org/10.1063/1.2921788
  2. Magnetic fields during high redshift structure formation vol.334, pp.6, 2013, https://doi.org/10.1002/asna.201211898
  3. Small-scale dynamo action during the formation of the first stars and galaxies vol.522, 2010, https://doi.org/10.1051/0004-6361/201015184
  4. GRB fireball physics: prompt and early emission vol.8, pp.9, 2006, https://doi.org/10.1088/1367-2630/8/9/199
  5. Instabilities of relativistic counterstreaming proton beams in the presence of a thermal electron background vol.17, pp.6, 2010, https://doi.org/10.1063/1.3432722
  6. Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array vol.494, pp.1, 2009, https://doi.org/10.1051/0004-6361:200810964
  7. THE GENERATION OF STRONG MAGNETIC FIELDS DURING THE FORMATION OF THE FIRST STARS vol.721, pp.2, 2010, https://doi.org/10.1088/2041-8205/721/2/L134
  8. TURBULENT DYNAMO IN A CONDUCTING FLUID AND A PARTIALLY IONIZED GAS vol.833, pp.2, 2016, https://doi.org/10.3847/1538-4357/833/2/215
  9. Radiation from non-linear Weibel plasma modes vol.520, pp.1, 2012, https://doi.org/10.1016/j.physrep.2012.03.006
  10. Dispersion relations for a general anisotropic distribution function represented as a sum over Legendre polynomials vol.18, pp.3, 2011, https://doi.org/10.1063/1.3559478
  11. High energy neutrinos from dissipative photospheric models of gamma ray bursts vol.2012, pp.11, 2012, https://doi.org/10.1088/1475-7516/2012/11/058
  12. Weakly propagating unstable modes in unmagnetized plasmas vol.14, pp.7, 2007, https://doi.org/10.1063/1.2749719
  13. Instability conditions and maximum growth rate of aperiodic instabilities vol.18, pp.1, 2011, https://doi.org/10.1063/1.3534822
  14. Magnetic field production via the Weibel instability in interpenetrating plasma flows vol.24, pp.4, 2017, https://doi.org/10.1063/1.4982044
  15. Gamma-ray bursts vol.69, pp.8, 2006, https://doi.org/10.1088/0034-4885/69/8/R01
  16. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows vol.11, pp.2, 2015, https://doi.org/10.1038/nphys3178
  17. Collisionless shock experiments with lasers and observation of Weibel instabilitiesa) vol.22, pp.5, 2015, https://doi.org/10.1063/1.4920959
  18. Application of multi-pulse optical imaging to measure evolution of laser-produced counter-streaming flows vol.26, pp.5, 2017, https://doi.org/10.1088/1674-1056/26/5/054206
  19. Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts vol.166, pp.1-4, 2012, https://doi.org/10.1007/s11214-011-9785-9
  20. On microinstabilities in the foot of high Mach number perpendicular shocks vol.111, pp.A6, 2006, https://doi.org/10.1029/2005JA011409