• Title/Summary/Keyword: magnetic scalar potential

Search Result 28, Processing Time 0.024 seconds

3-D Magnetostatic Field Analysis Using Boundary Element Method (경계요소법을 이용한 3차원 정자장 해석)

  • 전기억;고창섭;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1211-1217
    • /
    • 1991
  • A three dimensional magnetostatic probodm is analyzed using the boundary element method and the magnetic scalar potential are employed in order to reduce the size of system matrix. Although the total magnetic scalar potential gives very accurate solutions at inner and outer regions of magnetic materal, the method has limitation on application because the magnetic scalar potential due to applied magnetic field sources is hard to be obtained. The reduced magnetic scalar potential gives more or less inaccurate solutions inside the magnetic material but very accurate solutions outside. Hence it can be concluded that the reduced magnetic scalar potential is very useful when the magnetic fields of outside of magnetic fields of outside of magnetic material are interested. It is also shown, from the numerical example, that the linear shape function gives more efficient solutions than the constant shape functions.

  • PDF

3-D Magnetostatic Field Analysis Using Boundary Element Method (경계요소법을 이용한 3차원 정자장해석)

  • Jeon, K.E.;Koh, C.S.;Jung, H.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.97-101
    • /
    • 1991
  • A three-dimensional magnetostatic problem is analyzed using the boundary element method and the magnetic scalar potential are employed in order to reduce the size of system matrix. Although the total magnetic scalar potential gives very accurate solutions in inner and outer regions of magnetic material, it has limitation on application because the magnetic scalar potential due to applied magnetic field sources is hard to be obtained. The reduced magnetic scalar potential gives more or less inaccurate solutions inside the magnetic material but very accurate solutions outside. Hence it can be concluded that the reduced magnetic scalar potential is very useful when the magnetic fields of outside magnetic material only are interested. It is also shown, from the numerical results, that the linear shape function gives more efficient solutions than the constant shape functions because the former gives more accurate solutions in spite of relatively fewer unknowns than the latter.

  • PDF

Magnetic Field Computations of the Magnetic Circuits with Permanent Magnets using Finite Element Method (유한요소법을 이용한 영구자석 자기회로의 자석 해석)

  • 박영건;정현규;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.167-172
    • /
    • 1984
  • This paper describes the finite element analysis of magnetostatic field problems with permanent magnets. Two kinds of algorithms, one using the magnetic vector potential and the other using the magnetic scalar potential, are introduced. The magnetization of the pemanent magnet is used as the source instead of the magnetic equivalent current in both of the formulations using the magnetic vector potential and the magnetic scalar potential. A simple functional, which has only the region integral instead of the region integral and boundary integral, is derived in the formulation using the magnetic scalar potential. These make the formulation of the system equations simpler and more convenient than the conventional methods. The numerical results by the two proposed algorithms for a C-type permanent magnet model are compared with the analytic solutions respectively. The numerical results are in good agreement with the analytic solutions.

  • PDF

General Analytical Method for Magnetic Field Analysis of Halbach Magnet Arrays Based on Magnetic Scalar Potential

  • Jin, Ping;Yuan, Yue;Lin, Heyun;Fang, Shuhua;Ho, S.L.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • This paper presents a general analytical method for predicting the magnetic fields of different Halbach magnet arrays with or without back iron mounted on slotless permanent magnet (PM) linear machines. By using Fourier decomposition, the magnetization components of four typical Halbach magnet arrays are determined. By applying special synthetic boundary conditions on the PM surfaces, the expressions of their magnetic field distributions are derived based on the magnetic scalar potential (MSP), which are simpler than those based on the magnetic vector potential (MVP). The correctness of the method is validated by finite element analysis. The harmonics of airgap flux density waveforms of these Halbach magnet arrays with or without back iron are also compared and optimized.

Calculation of Magnetic Field for Cylindrical Stator Coils in Permanent Magnet Spherical Motor

  • Li, Hongfeng;Ma, Zigang;Han, Bing;Li, Bin;Li, Guidan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2158-2167
    • /
    • 2018
  • This paper analyzed the magnetic field produced by the cylindrical stator coils of permanent magnet spherical motor (PMSM). The elliptic equations about the vector magnetic potential were given. Given that the eddy current effects are neglected, the magnet field of the PMSM is regarded as irrotational field, which can be calculated by scalar magnetic potential. The current density of cylindrical stator coil was proposed based on the definition of current density. The expression of current density of stator coil was obtained according to the double Fourier series decomposition and spherical harmonic functions. Then the magnetic flux density for scalar magnetic potential was derived. Further, the influence of different parameters on radial flux density was also analyzed. Finally, the results by the analytical method in this paper were validated by finite element analysis (FEA).

Finite Element Analysis of 3-D Eddy Current Problems using A-$\phi$ (A-$\phi$를 이용한 3차원 와전류 문제의 유한요소 해석)

  • Hong, Sung-Pyo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.41-44
    • /
    • 1989
  • This paper describes an analysis of the three-dimensional eddy current problems by the finite element method using magnetic vector potential and electric scalar potential. The finite element formulation uses first-order shape functions and tetrahedral elements. The validity of this formalation is ensured as the result of the sphere conductor model problem in a sinusoidal magnetic field.

  • PDF

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.

Effects of Coulomb Gauge Condition and Current Continuity Condition on 3-Dimensional FE Analysis for Eddy Current Problems (3차원 와전류문제의 유한요소해석에서 쿨롱게이지조건과 전류연속조건의 영향)

  • Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.483-491
    • /
    • 2005
  • To solve the 3D eddy current problems by using FE(finite element) method with MVP(magnetic vector potential) and electric scalar potential, Coulomb gauge condition and current continuity condition have to be considered. Coulomb gauge condition enforced on existing FE formulations to insure the uniqueness of MVP looks unnatural and current continuity condition which can be driven from Ampere's law looks unnecessary. So in this paper the effect of two conditions on FE formulations are investigated in order to help to obtain accurate numerical simulation results.

3-Dimensional Magnetic Field Analysis of Coil Using Biot-Savart Law Considering Singularity (특이점이 고려된 비오-사바르법을 이용한 3차원 코일의 자계 해석)

  • Song, Ho-Jun;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.104-106
    • /
    • 2005
  • In this paper, 3-dimensional magnetic field of coil is analyzed by using biot-sarvart law considering singularity. The RMSP(reduced magnetic scalar potential) arc employed in order to reduce the number of unknown variables in FEM(Finte Element Analysis) or BEM(Boundary Element Method). It Is necessary to calculate magnetic field of souce current when RMSP is used. Biot-savart law is generally used. it is difficult to calculate the field when the source point is in inside the coil. To integrate using gaussian quadrature, the cross section of coil is divided considering the position of field point when field point is inside coil. The proposed method shows good agreement of magnetic field compared with FEMLAB, OPERA3D.

  • PDF

3-D Eddy Current Analysis Considering the Velocity of Suspension Magnet by Hybrid FE, BE Method (FEM, BEM 혼합적용에 의한 속도를 고려한 부상전자석의 3차원 와류 해석)

  • Im, Dal-Ho;Hong, Jung-Pyo;Lee, Geun-Ho;Sin, Heung-Gyo;Kim, Goo-Tak
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1007-1009
    • /
    • 1993
  • In this paper, The hybrid method in order to reduce the unknown varible for 3D eddy current calculation is proposed. we adopt the current vector potential(T) and the magnetic scalar potential($\Omega$) as field variable, and adopt image charge method for symetric boundary condition in BEM. We apply the hybrid method to electromagnet for levitation system and analyze the charateristics of eddy current airgap flux distribution, attractive and magnetic drag force according to velocity.

  • PDF