• Title/Summary/Keyword: magnetic ordering

Search Result 86, Processing Time 0.025 seconds

Ferroelectric-Paraelectric Phase Transition of CsH2PO4 studied by Static NMR and MAS NMR

  • Lim, Ae Ran;Lee, Kwang-Sei
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • The microscopic dynamics of $CsH_2PO_4$, with two distinct hydrogen bond lengths, are studied by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The proton dynamics of the two crystallographically inequivalent hydrogen sites were discussed in terms of the $^1H$ NMR and $^1H$ MAS NMR spectra. Although the hydrogen bonds have two inequivalent sites, H(1) and H(2), distinct proton dynamics for the two sites were not found. Further, the $^{133}Cs$ spectrum is more or less continuous near $T_{C1}$ (=153 K). Finally, the phase transition mechanism of $T_{C1}$ in $CsH_2PO_4$ is related to the ordering of protons.

EXAFS study for the ordering of manganese in $La_{0.7}Ca_{0.3-x}Ba_xMnO_3$

  • 양동석
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.12-12
    • /
    • 2002
  • Lanthanum manganites have been extensively studied for the application to magnetic devices since the colossal magnetoresistance of these compounds has been observed [1]. The critical temperatures, Tc, of manganites La/sub 0.7/Ca/sub 0.3-x/Ba/sub x/MnO₃ increased as the content of Ba increased except the abrupt jump near the critical concentration. The step like behavior of the critical temperature for a similar compound has been known to be related to the structural phase transition [2]. To understand the step like behavior of Tc, the EXAFS technique is applied to the La/sub 0.7/Ca/sub 0.3-x/Ba/sub x/MnO₃ compound system. The ordering between the manganese and oxygen was examined by this method. The EXAFS analysis shows that the coordination numbers were not changed before and after the phase transition, the bonding distance between manganese and oxygen is about 1.94 ± 0.02 Å, which is consistent with other work [3] and the Debye waller parameters were about σ²= 0.0037 ± 0.0005 Ų for x=0.0 and x=3.0, respectively. The value of Debye-Waller parameter for x=0.09 is about σ² = 0.0050 ± 0.0005 Ų in about phase transition concentration. Based on the Debye-Waller parameters, it is shown that the ordering between manganese and oxygen is significantly reduced near the phase transition concentration.

  • PDF

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

The Magnetic Entropy Change on La0.7Ba0.3Mn1-xFexO3 Compound

  • Hwang, J.S.;Jang, D.M.;Kim, K.S.;Lee, J.S.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.30-33
    • /
    • 2013
  • The magnetocaloric effect and magnetization behavior have been analyzed in the double-perovskite $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound with the sintering temperature at 1273 K. Samples were fabricated by the conventional solid-state reaction method. X-ray diffraction measurement revealed that all the samples had a single phase in orthorhombic. Detailed investigations of the magnetic entropy behavior of the samples were discussed with the variation of $T_C$. The magnetic entropy changes, ${\Delta}S_M$ of approximately 0.36-1.14 J/kg K were obtained in the temperature range of 145-350 K for the $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound. The enhancement of the magnetic entropy change is believed to be due to changes in the microstructure, which changes the magnetic part of the entropy of a solid around the magnetic ordering temperature.

Electronic Structure of Superconducting NaFeAs (초전도 NaFeAs의 전자 구조)

  • Lee, K.W.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.123-127
    • /
    • 2009
  • NaFeAs recently observed superconductivity with the maximum $T_c{\approx}25$ K is investigated using first principles approach. We will address briefly the electronic structure and contrast other superconducting pnictides. This system shows strong two-dimensionality and reduction of flatness in the Fermi surfaces undermines tendencies of magnetic or charge instabilities. As observed in other superconducting pnictides, $Q_M=(\pi,\pi,0)$ antiferromagnetic ordering, which has not been observed clearly yet in this compound, is energetically favored. However, contrast to other superconducting pnictides, the density of states in this ordering shows considerable electron-hole asymmetry, implying efficiency of hole-doping than electron-doping to enhance $T_c$.

  • PDF

Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_20_5 (YBaCo_20_5 화합물에서의 구조변형에 의한 전하, 궤도, 스핀상태 전이 연구)

  • Se Kyun Kwon;Jin Ho Park;Byung II Min
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.461-461
    • /
    • 2000
  • We have investigated electronic structuresof antiferromagnetic YBaCo_2O_5 using the local spin-density approximation (LSDA) + U method. The charge and orbital ordered insulating ground state is correctly obtained with the strong on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the high spin (HS) and intermediate spin (IS) state, respectively. The tetragonal to orthorhombic structural transition is responsible for the ordering phenomena and the spin states of Co ions. The large contribution of the orbital moment to the total magnetic moment indicates that the effect of the spin-orbit coupling is very important in YBaCo_2O_5.

  • PDF

Magnetic and magneto-optical properties of two metallic phase magnet Co/Co$_2$TiSn films

  • Kim, T. W.;Lee, J. W.;S. C. Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.375-377
    • /
    • 1998
  • The magneto-optical properties of Co/Co$_2$TiSn two-phase magnet films were studied. These films show that relatively large Kerr rotations which are -0.4 deg. at the wavelength of 400 nm, compared to that of pure Co. It is conceivable that the magneto-optical effects may be due to both contributions of ferromagnetic Co matrix and ferromagnetic Co$_2$TiSn Heusler alloy precipitate. The perpendicular magnetization curve domonstrates a typical bubble domain hysteresis loop. the saturation magnetization change of the annealed film is less sensitive to temperature in the low temperature region and the Curie temperature of Co$_2$TiSn Heusler alloy precipitate is a little higher in the annealed film. These can be explained by the increase of the number of Co-Co exchange interaction in Heusler alloy structure resulting from the change of chemical ordering by annealing.

  • PDF

Superconductivty and Magnetic Properties of Tb-substituted $RuSr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$ (Tb이 치환된 $RuSr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$ 계의 초전도 및 자기적 특성)

  • Lee, H.K.;Lee, M.S.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.110-115
    • /
    • 2012
  • Samples with nominal compositions of $RuSr_2(Eu_{1.34-x}Tb_xCe_{0.66})Cu_2O_z$ (x = 0, 0.67) were prepared and their superconductivity and magnetic properties were compared to shed light on the effect of Tb substitution for Eu. X-ray diffraction measurements indicate that the Tb substitution resulted in a decrease in both a and c lattice parameters in consistent with ionic size difference between Eu and Tb. Contrary to the Tb-free sample, no superconducting transition behavior is observed in the Tb-sustituted sample. It is also found that the Tb substitution for Eu significantly increases the weak-ferromagnetic component of the field-cooled magnetic susceptibility as well as an increase in the magnetic ordering temperature. These results suggest that the magnetic state of the Ru sublattice is significantly affected by the Tb substitution for Eu.

Ordering of manganese spins in photoconducting $Zn_{1-x}Mn_xTe$

  • Kajitani, T.;Kamiya, T.;Sato, K.;Shamoto, S.;Ono, Y.;Sato, T.;Oka, Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.39-43
    • /
    • 1998
  • Single crystals of{{{{ { Zn}_{ 1-x} {Mn }_{x }{Te} }}}} with x=0.3-0.6 were prepared by the standard Bridgeman method. Diffuse neutron diffraction intensities due to the short range magnetic ordering is found in the vicinities of 1 1/2 0 reciprocal point and its equivalent point, indicating that the magnetic correlation of the clusters is the type III antiferromangetic one do the F-type Bravais class crystals, being identical with that of {{{{{ Cd}_{ 1-x} {Mn }_{x }Te }}}}. Neutron inelastic scattering measure-ment has been performed for {{{{{ Zn}_{ 0.6} { Mn}_{ 0.4}Te }}}} sample using the cold neutron spectrometer. AGNES. High resolution measurement with the energy resolution of {{{{ TRIANGLE E= +- .01meV}}}} was carried out in the temperature range from 10K to the ambient. Critical scattering, closely related with the spin glass transition, has been observed for the first time in this semimagnetic semi-conductor. The critical scattering is observed at temperatures in the vicinity of the spin glass transition temperature, 17K. The scattering is observed as a kind of quasielastic scattering in the reciprocal range where the elastic magnetic diffuse scattering has been observed, e.g., 11/20 reciprocal point, indicating the spin fluctuation has dynamic components in this material. Photoconductivity has been discovered below 150K in {{{{{ Zn}_{ 0.4} {Mn }_{0.6 } Te}}}}. The electric AC conductivity has been increased dramatically under the laser light with the wave lengths of {{{{ lambda =6328,5145 and4880 }}}}$\AA$ ,respectively. After the light was darkened, the conductivity was reduced to the original level after about 2000 seconds at 50K, being above the spin glass transition temperature. This phenomenon is the typical persistent photoconductivity; PPC which was similarly found in {{{{ { Zn}_{ 1-x} { Mn}_{x} Te}}}}.

  • PDF

Electronic Structures and Physical Properties of the Ordered and Disordered $Ni_2$MnGa Alloy Films

  • Kim, K. W.;Lee, N. N.;Y. Y. Kudryavtsev;Lee, Y. P.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.104-106
    • /
    • 2003
  • In this study, the electronic structures and physical properties of Ni$_2$MnGa alloy films and their dependence on the order-disorder structural transitions were investigated. The results show that the ordered films behave nearly the same as the bulk $Ni_2$MnGa alloy, including the martensitic transformation at 200 K. Unexpectedly, the disordering in $Ni_2$MnGa alloy films does not lead to any appreciable magnetic ordering down to 4 K. An annealing of the disordered films restores the ordered structure with an almost full recovery of the magnetic and the transport properties of the ordered $Ni_2$MnGa alloy films. A possible explanation of the disappearance of magnetic moment in the disordered film is given by using the ab initio first-principles electronic-structure calculations.