SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J. (Institute of Electronics, UM&M) ;
  • Lubecka, M. (Institute of Electronics, UM&M) ;
  • Jablonski, R. (Institute of Electronic Materials Technology)
  • Published : 1998.12.01

Abstract

The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

Keywords

References

  1. Phys. Rev v.B55 M. Lubecka;L. J. Maskymowicz;R. Szymczak;W. Powroznik
  2. Phil. Mag v.B65 I. A. Campbell;S. Senoussi
  3. Phys. Rev. Lett v.50 I. A. Campbell;S. Senoussi;F. Teillet;A. Hamzic
  4. Phys. Rev. v.B44 M. Lubecka;L. J. Maksymowicz
  5. Phys. Rev. v.B48 M. Lubecka;L. J. Maksymowicz
  6. J. Phys. Chem. Solids v.4 I. Dzyaloshinskii
  7. Phys. Rev. Lett. v.4 T. Moriya
  8. Phys. Rev. Lett. v.44 A. Fert;P. M. Levy
  9. Phys. Rev. v.B23 P. M. Levy;A. Fert
  10. 4th Korean-Polish Seminar on Physical Properties of Magnetic Materials M. Lubecka;L. J. Masksymowicz;R. Szymczak;W. Powroznik
  11. Solid State Comm v.82 A. H. El-Sayed
  12. Progr. Surface v.9 H. Puszkarski
  13. Phy. Rev. v.B1 M. Sparks
  14. J. Magn. Magn. Mater. v.140;244 M. Lubecka;L. J. Masksymowicz;W. Powroznik;E. Urbaniec
  15. Solid State Commum v.15 J. Spalek;A. Z. Masksymowicz
  16. J. Phys v.F3 A. Z. Maksymowicz;K. D. Leaver
  17. J. Magn. Magn. Mater v.80 E. M. Jaskson;S. B. Lio;S. M. Bhagat;M. A. Manheimer
  18. J. Magn. Magn. Mater v.67 L. J. Maksymowicz;D. Sendorek-Temple;R. Zuberek
  19. J. Phys. Chem. Solids v.2 C. T. Rado;T. R. Weertman
  20. Phys. Rev v.97 W. S. Ament;C. T. Rado
  21. Phys. Rev v.B8 G. C. Bailey;C. Vittoria